Learning my per-matchup MMR in Starcraft II through PyMC3

In this post, we’ll redo last post’s SC2 replay analysis, except we’ll take the three matchups available and infer separate MMR values for each of those.
bayes
pymc3
starcraft
python
StarCraft II Bayesian replay analysis
Published

June 20, 2020

In this post we’ll continue our SC2 replay research, started last time. You may want to go back to that and pick up on the terminology!

To recap: we used replay data from my SC2 games over 2019 to estimate a “true MMR” value and infer the size of per-game fluctuations. This time, we’ll redo that analysis, except to get something more useful: we’ll look at the three matchups I played and infer separate MMR values for each of those. Let’s dig into it!

I’ll redo the basic data cleaning steps here. If any of this is confusing, reviewing the previous post might really be a good idea - or you could ask a question below, as always!

If you take a close look, you might also find a teaser for one of the next posts in this series here :)

import pandas as pd
import altair

def MMR_winrate(diff):
    return 1 / (1 + 10**(-diff/880))

df = pd.read_csv("https://raw.githubusercontent.com/StanczakDominik/stanczakdominik.github.io/src/files/replays.csv", index_col=0)
df['time_played_at'] = pd.to_datetime(df.time_played_at)
df = df.sort_values('time_played_at')
for column in ['race', 'enemy_race', 'map_name']:
    df[column] = pd.Categorical(df[column])
df['enemy_mmr'] = df['mmr'] - df['mmr_diff']
df['expected_winrate'] = MMR_winrate(df.mmr_diff)
all_data = df[(df.mmr > 0) & (df.enemy_mmr > 0) & (df.race == "Protoss") & (df.duration > 10)]
all_data = all_data.rename({"enemy_nickame": "enemy_nickname"}, axis=1) # whoops
data = all_data[(all_data['time_played_at'] > '2019-01-01') & (all_data['time_played_at'] < '2020-01-01')]
data
time_played_at win race enemy_race mmr mmr_diff enemy_nickname map_name duration enemy_mmr expected_winrate
8 2019-10-06 12:36:36+00:00 True Protoss Protoss 3826 78 vasea World of Sleepers LE 743 3748 0.550847
325 2019-10-08 19:33:28+00:00 False Protoss Protoss 3893 -53 Wavelength Ephemeron LE 254 3946 0.465386
54 2019-10-10 07:41:27+00:00 False Protoss Zerg 3828 26 PereiRa Winter's Gate LE 45 3802 0.517001
346 2019-10-10 07:55:19+00:00 True Protoss Zerg 3760 -56 &lt;PROOO&gt;<sp/>Jesperpro Thunderbird LE 801 3816 0.463433
138 2019-10-10 20:42:11+00:00 True Protoss Protoss 3827 126 Pippuri Acropolis LE 697 3701 0.581684
... ... ... ... ... ... ... ... ... ... ... ...
391 2019-12-27 20:24:27+00:00 False Protoss Zerg 3933 -100 HiveMind World of Sleepers LE 262 4033 0.434956
25 2019-12-27 20:40:39+00:00 True Protoss Zerg 3914 0 Racin Nightshade LE 911 3914 0.500000
208 2019-12-27 21:24:06+00:00 True Protoss Terran 3936 -41 &lt;DemuCl&gt;<sp/>Jazzz Nightshade LE 1277 3977 0.473206
59 2019-12-28 20:58:25+00:00 True Protoss Terran 3959 22 rOoSter Simulacrum LE 76 3937 0.514387
364 2019-12-28 21:06:48+00:00 True Protoss Zerg 3980 -260 contremaitre Nightshade LE 478 4240 0.336192

138 rows × 11 columns

Let’s visualize the games on a per-matchup MMR vs enemy MMR basis. I added some fancy Altair selection magic, so you can look at winrates in specific MMR ranges.

brush = altair.selection(type='interval')
scatter = altair.Chart(data).mark_circle().encode(
    altair.X('enemy_mmr',
             scale=altair.Scale(zero=False)),
    altair.Y('mmr',
             scale=altair.Scale(zero=False)),
    facet='enemy_race',
    size='expected_winrate',
    color='win',
    tooltip='enemy_nickname',
).add_selection(brush)

bar = altair.Chart(data).mark_bar().encode(
    x=altair.X('mean(win):Q', scale=altair.Scale(domain=(0, 1))),
    y='enemy_race:O',
).transform_filter(brush)

scatter & bar

Separate matchup MMRs

This is where the magic starts. Where, before, we had a single MMR estimation, we’ll now have three, one for each matchup: \[\mu^n \sim \text{Normal}(4000, 300) \text{ for } n \text{ in } \{1, 2, 3\}\]

And likewise for the fluctuation value: \[\sigma^n \sim \text{HalfNormal}(100)\]

And that, honestly, is about it! When I realized it, I wanted to title this post “How Can It Be That Simple, Like, What The Hell”. But I did have to tinker with the model for a good while to find out the optimal way of doing things. It turns out the first idea I had was optimal. Who knew.

We’ll use some fancy new PyMC3 3.9 and ArviZ 0.8.3 functionality to replace the old shapes arguments with dims, for cleaner code.

Note: to reproduce, use the GitHub master release of ArviZ for now.

import pymc3 as pm
import arviz as az

# fancy new functionality for xarray output - I'll explain later!
coords = {
    "replay": data.index,
    "race": ["Terran", "Protoss", "Zerg"],
}

We now assign the new priors for \(\mu^n\) and \(\sigma^n\), three of each - and then we’ll add a helper variable for each of the replays. Note how the new syntax is a good bit cleaner than hardcoding the shapes in.

with pm.Model(coords=coords) as split_model:
    mmr_μ_matchup = pm.Normal('μ', 4000, 300, dims='race')
    mmr_σ_matchup = pm.HalfNormal('σ', 100, dims='race')
    mmr_σ_norm = pm.Normal('helper', 0, 1, dims='replay')

And the next change we have to make is indexing the per-race average and fluctuation values based on the enemy races, so that each game in our dataset gets the MMR for its particular matchup.

We’ll have to assign a numerical index for each possible enemy race. We’ll choose zeroes for Terran and two for Zerg, so that, at least in indices, Protoss can be number one.

race_encoding ={"Terran": 0,
                "Protoss": 1,
                "Zerg": 2} 

with split_model:
    enemy_races = pm.Data("enemy_race", data.enemy_race.map(race_encoding).astype(int), dims='replay')
    mmr = pm.Deterministic('MMR', mmr_μ_matchup[enemy_races] + mmr_σ_matchup[enemy_races] * mmr_σ_norm, dims='replay')

And now it’s smooth sailing from here on out! I forgot to add it last time, but PyMC3 can create a neat graph for your model using GraphViz. If I had remembered to do so, the only difference between this model and ours would be the 3 for \(\mu, \sigma\) - since we now have three of each - and adding the enemy_race as pymc3.Data.

with split_model:
    enemy_mmr = pm.Data("enemy_mmr", data.enemy_mmr, dims='replay')
    diffs = pm.Deterministic('MMR_diff', mmr - enemy_mmr, dims = 'replay')
    p = pm.Deterministic('winrate', MMR_winrate(diffs), dims = 'replay')
    wl = pm.Bernoulli('win', p=p, observed=data.win, dims = 'replay')
pm.model_to_graphviz(split_model)

First run

And now, let’s sample! We’ll add a predictive prior and posterior sample: this lets us easily see what sort of data we’d see from our initial assumptions and from the fully “learned” (“taught”?) model.

predictive_var_names = "win μ σ winrate".split()
with split_model:
    trace = pm.sample(2000, tune=2000, chains=4, random_seed=1)
    output = az.from_pymc3(trace=trace,
                           prior=pm.sample_prior_predictive(2000 , var_names=predictive_var_names, random_seed=1),
                           posterior_predictive=pm.sample_posterior_predictive(trace, var_names=predictive_var_names, random_seed=1),
                          )
output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 2 jobs)
NUTS: [helper, σ, μ]
100.00% [16000/16000 00:17<00:00 Sampling 4 chains, 7 divergences]
Sampling 4 chains for 2_000 tune and 2_000 draw iterations (8_000 + 8_000 draws total) took 18 seconds.
There were 4 divergences after tuning. Increase `target_accept` or reparameterize.
There were 3 divergences after tuning. Increase `target_accept` or reparameterize.
100.00% [8000/8000 00:07<00:00]
arviz.InferenceData
    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • μ
          (chain, draw, race)
          float64
          4.303e+03 3.375e+03 ... 3.955e+03
          array([[[4302.79553938, 3375.01011989, 4048.86315149],
                  [4323.86457361, 3295.74222841, 3954.05048638],
                  [4239.6739907 , 3448.28894514, 4235.71022401],
                  ...,
                  [4250.95500899, 3592.96680679, 3907.78214913],
                  [4321.36051851, 3657.60296464, 4041.53244852],
                  [4378.58347689, 3680.20202035, 4041.44904971]],
          
                 [[4141.06331072, 3385.94471985, 4135.36324411],
                  [4138.80737046, 3670.4073407 , 4045.58916728],
                  [4194.72695819, 3676.40161761, 3931.11602939],
                  ...,
                  [4066.10358294, 3429.85753425, 4004.41005399],
                  [4049.09082588, 3382.29455772, 3954.15834981],
                  [4422.29348522, 3549.2372973 , 4066.31337586]],
          
                 [[4212.20435522, 3476.71136441, 4104.05998443],
                  [4139.66832504, 3371.93545224, 4198.27086105],
                  [4369.19834033, 3797.3129873 , 3828.50248262],
                  ...,
                  [4320.92217993, 3755.9095065 , 4165.54070368],
                  [4231.08308098, 3713.65002654, 3964.55758405],
                  [4274.41509776, 3407.86141075, 3931.29076179]],
          
                 [[4314.0372303 , 3573.73152574, 4058.10772914],
                  [4114.59770596, 3463.36390945, 4018.74209014],
                  [4464.57525582, 3705.14913054, 4089.96639073],
                  ...,
                  [4504.44403668, 3638.42652115, 3911.16769539],
                  [4256.83526394, 3886.43065114, 3954.52402571],
                  [4256.83526394, 3886.43065114, 3954.52402571]]])
        • helper
          (chain, draw, replay)
          float64
          0.7894 0.5491 ... 1.849 -0.6287
          array([[[ 0.78936952,  0.5490887 ,  0.16650833, ...,  0.08329766,
                   -0.65050062,  0.29929534],
                  [ 1.58545972, -0.65388647, -0.65379105, ...,  1.82456396,
                   -0.19362754,  1.51704283],
                  [-0.95306398,  1.74037107, -1.06139752, ...,  0.49580659,
                   -1.65596289,  0.84096651],
                  ...,
                  [ 0.83862077,  0.72070695,  0.48932378, ..., -0.2039098 ,
                   -1.29151567,  1.33576567],
                  [ 0.36248347,  1.46751904,  2.691205  , ...,  1.45830882,
                   -0.35768443,  2.55530514],
                  [ 1.08745544,  1.27714706,  0.61058664, ...,  1.29672473,
                   -0.50342047,  2.35664708]],
          
                 [[ 1.03478446,  0.34214246, -0.02786286, ..., -1.94344799,
                   -1.74622235,  0.23291672],
                  [-1.13226371,  0.59456024, -0.63842647, ...,  0.36564697,
                   -0.64213818,  1.34387537],
                  [-1.13076226,  0.23707974, -1.6545314 , ..., -0.40823523,
                   -2.01952747,  1.78589938],
                  ...,
                  [ 1.07091423, -0.57066178,  0.11606562, ..., -1.94859916,
                   -0.54562754,  0.47149236],
                  [ 1.73615185, -0.27786063, -0.27283103, ..., -1.55429249,
                   -0.73246607,  0.73910541],
                  [-0.65499351,  1.15010742,  0.65100113, ..., -0.51231793,
                   -0.53271042,  1.44304005]],
          
                 [[ 0.49833716, -0.51620112,  0.13741193, ...,  0.501271  ,
                    1.09108997, -0.73316122],
                  [-0.25632797,  0.70929871, -0.30192588, ...,  0.74061067,
                    0.88777097,  0.1928401 ],
                  [ 0.24746999, -0.78483546,  0.05723709, ..., -0.06153329,
                   -2.12186644,  0.20316985],
                  ...,
                  [ 2.14989454,  1.12821892,  0.49014978, ...,  0.70910716,
                   -0.11305358, -0.26844358],
                  [ 0.79712821, -0.98653506,  0.27999657, ...,  0.02147621,
                    0.45285935, -0.223395  ],
                  [ 1.17281098, -0.88489812,  2.22847395, ...,  0.52398786,
                   -0.19246968,  0.97882991]],
          
                 [[ 0.15828557, -0.38448579, -0.2247607 , ...,  0.09849247,
                   -0.17279176,  0.79657494],
                  [ 0.3954921 , -0.67537986, -0.07942884, ...,  1.00072493,
                   -0.15591947,  0.71581227],
                  [ 2.66366278,  0.60968907, -0.42128861, ..., -0.09888939,
                    0.52831846,  0.29878227],
                  ...,
                  [-0.54199678, -0.4028017 , -1.59414456, ...,  2.31936087,
                    0.07555759,  0.57843756],
                  [ 1.20184084,  0.51496559,  0.73758509, ...,  1.82835713,
                    1.8487901 , -0.62868765],
                  [ 1.20184084,  0.51496559,  0.73758509, ...,  1.82835713,
                    1.8487901 , -0.62868765]]])
        • σ
          (chain, draw, race)
          float64
          140.4 252.7 183.9 ... 72.88 55.78
          array([[[140.36011672, 252.69076651, 183.8904596 ],
                  [161.51391431,  82.67823509, 212.55352477],
                  [108.91799094,  66.69192358,  88.42575348],
                  ...,
                  [ 31.69679346, 101.09097511,  32.56956811],
                  [148.25558444,  50.48937963, 103.02389557],
                  [170.53973503,  42.45131739,   7.22075687]],
          
                 [[ 81.39860974,  97.00223551,   5.23367679],
                  [ 28.60567987, 120.58701662, 119.74595091],
                  [ 24.85236716,  47.00875165,  62.47517088],
                  ...,
                  [ 27.08894035, 109.52428738,  89.74107174],
                  [101.36114868,  44.00684249,  63.21585206],
                  [ 45.44140301,  42.24565628,  32.21911083]],
          
                 [[ 85.15403518,  72.24973621, 101.9819129 ],
                  [ 69.33515359,  91.23129494, 140.7847575 ],
                  [ 45.56776301, 101.34687473,  65.85446419],
                  ...,
                  [ 39.67975301,  28.28842643,  52.09586543],
                  [227.54401728,  35.04100696,  46.01622763],
                  [141.84401665, 229.02600795,   5.01932257]],
          
                 [[170.73574582,   6.64000168, 256.76699449],
                  [ 77.7241646 ,  58.94863209,  63.38158179],
                  [ 92.43500404,  57.06879911,  99.61428138],
                  ...,
                  [ 34.21264796,  52.28070628, 126.57472452],
                  [179.13659055,  72.88096661,  55.7761304 ],
                  [179.13659055,  72.88096661,  55.7761304 ]]])
        • MMR
          (chain, draw, replay)
          float64
          3.574e+03 3.514e+03 ... 3.919e+03
          array([[[3574.47650843, 3513.75976477, 4079.48244533, ...,
                   4314.48720853, 4211.49119573, 4103.90070894],
                  [3426.82524018, 3241.68004931, 3815.08489516, ...,
                   4618.55704024, 4292.59103243, 4276.50328733],
                  [3384.72727505, 3564.35763932, 4141.85534813, ...,
                   4293.67624891, 4059.3098399 , 4310.07332137],
                  ...,
                  [3677.74379789, 3665.82377497, 3923.71921341, ...,
                   4244.49172209, 4210.01810344, 3951.28746012],
                  [3675.90453027, 3731.69709048, 4318.79087106, ...,
                   4537.56294544, 4268.33180356, 4304.78993801],
                  [3726.36593656, 3734.41859557, 4045.85794741, ...,
                   4599.72656921, 4292.73028387, 4058.46582531]],
          
                 [[3486.32112569, 3419.1333035 , 4135.21741888, ...,
                   3982.86934633, 3998.92323941, 4136.58225494],
                  [3533.87103837, 3742.10358598, 3969.14018261, ...,
                   4149.26695054, 4120.43857122, 4206.51280099],
                  [3623.24589541, 3687.54644032, 3827.74889736, ...,
                   4184.58134634, 4144.53692   , 4042.69039863],
                  ...,
                  [3547.14865165, 3367.35620982, 4014.82590683, ...,
                   4013.31809649, 4051.32311109, 4046.72228372],
                  [3458.69711886, 3370.06678874, 3936.91110358, ...,
                   3891.5459539 , 3974.84722316, 4000.8815279 ],
                  [3521.5666664 , 3597.8243401 , 4087.28805338, ...,
                   4399.01303974, 4398.08637637, 4112.80684303]],
          
                 [[3512.71609283, 3439.41596971, 4118.0735164 , ...,
                   4254.88960386, 4305.11506861, 4029.29080031],
                  [3348.55031945, 3436.64569193, 4155.76429966, ...,
                   4191.01867944, 4201.22206179, 4225.4198078 ],
                  [3822.39329786, 3717.77236616, 3832.27180076, ...,
                   4366.39440592, 4272.50963317, 3841.88212429],
                  ...,
                  [3816.72664015, 3787.82504444, 4191.07548085, ...,
                   4349.0593768 , 4316.43624179, 4151.55590297],
                  [3741.58220182, 3679.08084456, 3977.44197015, ...,
                   4235.96986521, 4334.12851785, 3954.27778896],
                  [3676.46562714, 3205.19672793, 3942.47619137, ...,
                   4348.73963984, 4247.11442498, 3936.20382483]],
          
                 [[3574.78254219, 3571.17853943, 4000.39660036, ...,
                   4330.853415  , 4284.53550087, 4262.64188132],
                  [3486.67762767, 3423.55119059, 4013.70776491, ...,
                   4192.37821489, 4102.47899548, 4064.11140391],
                  [3857.16116685, 3739.94335347, 4048.00002814, ...,
                   4455.43441496, 4513.41037517, 4119.72937191],
                  ...,
                  [3610.09054683, 3617.36776396, 3709.38928727, ...,
                   4583.79551357, 4507.02906206, 3984.38327026],
                  [3974.02197305, 3923.96184115, 3995.66366771, ...,
                   4584.36092651, 4588.0212183 , 3919.4582613 ],
                  [3974.02197305, 3923.96184115, 3995.66366771, ...,
                   4584.36092651, 4588.0212183 , 3919.4582613 ]]])
        • MMR_diff
          (chain, draw, replay)
          float64
          -173.5 -432.2 ... 651.0 -320.5
          array([[[-173.52349157, -432.24023523,  277.48244533, ...,
                    337.48720853,  274.49119573, -136.09929106],
                  [-321.17475982, -704.31995069,   13.08489516, ...,
                    641.55704024,  355.59103243,   36.50328733],
                  [-363.27272495, -381.64236068,  339.85534813, ...,
                    316.67624891,  122.3098399 ,   70.07332137],
                  ...,
                  [ -70.25620211, -280.17622503,  121.71921341, ...,
                    267.49172209,  273.01810344, -288.71253988],
                  [ -72.09546973, -214.30290952,  516.79087106, ...,
                    560.56294544,  331.33180356,   64.78993801],
                  [ -21.63406344, -211.58140443,  243.85794741, ...,
                    622.72656921,  355.73028387, -181.53417469]],
          
                 [[-261.67887431, -526.8666965 ,  333.21741888, ...,
                      5.86934633,   61.92323941, -103.41774506],
                  [-214.12896163, -203.89641402,  167.14018261, ...,
                    172.26695054,  183.43857122,  -33.48719901],
                  [-124.75410459, -258.45355968,   25.74889736, ...,
                    207.58134634,  207.53692   , -197.30960137],
                  ...,
                  [-200.85134835, -578.64379018,  212.82590683, ...,
                     36.31809649,  114.32311109, -193.27771628],
                  [-289.30288114, -575.93321126,  134.91110358, ...,
                    -85.4540461 ,   37.84722316, -239.1184721 ],
                  [-226.4333336 , -348.1756599 ,  285.28805338, ...,
                    422.01303974,  461.08637637, -127.19315697]],
          
                 [[-235.28390717, -506.58403029,  316.0735164 , ...,
                    277.88960386,  368.11506861, -210.70919969],
                  [-399.44968055, -509.35430807,  353.76429966, ...,
                    214.01867944,  264.22206179,  -14.5801922 ],
                  [  74.39329786, -228.22763384,   30.27180076, ...,
                    389.39440592,  335.50963317, -398.11787571],
                  ...,
                  [  68.72664015, -158.17495556,  389.07548085, ...,
                    372.0593768 ,  379.43624179,  -88.44409703],
                  [  -6.41779818, -266.91915544,  175.44197015, ...,
                    258.96986521,  397.12851785, -285.72221104],
                  [ -71.53437286, -740.80327207,  140.47619137, ...,
                    371.73963984,  310.11442498, -303.79617517]],
          
                 [[-173.21745781, -374.82146057,  198.39660036, ...,
                    353.853415  ,  347.53550087,   22.64188132],
                  [-261.32237233, -522.44880941,  211.70776491, ...,
                    215.37821489,  165.47899548, -175.88859609],
                  [ 109.16116685, -206.05664653,  246.00002814, ...,
                    478.43441496,  576.41037517, -120.27062809],
                  ...,
                  [-137.90945317, -328.63223604,  -92.61071273, ...,
                    606.79551357,  570.02906206, -255.61672974],
                  [ 226.02197305,  -22.03815885,  193.66366771, ...,
                    607.36092651,  651.0212183 , -320.5417387 ],
                  [ 226.02197305,  -22.03815885,  193.66366771, ...,
                    607.36092651,  651.0212183 , -320.5417387 ]]])
        • winrate
          (chain, draw, replay)
          float64
          0.3884 0.244 ... 0.846 0.3018
          array([[[0.38840135, 0.24397871, 0.67393861, ..., 0.70745598,
                   0.67221636, 0.41190061],
                  [0.30145528, 0.13670806, 0.50855856, ..., 0.84272985,
                   0.71716256, 0.52386025],
                  [0.27877826, 0.26921766, 0.70873675, ..., 0.69606027,
                   0.57933223, 0.54571002],
                  ...,
                  [0.45417135, 0.32451442, 0.57895556, ..., 0.66816823,
                   0.67136651, 0.31963761],
                  [0.45297858, 0.36337639, 0.79449259, ..., 0.81256357,
                   0.70411153, 0.5422807 ],
                  [0.485852  , 0.36502532, 0.65431758, ..., 0.83608882,
                   0.71723646, 0.38343406]],
          
                 [[0.33521265, 0.20123624, 0.7051384 , ..., 0.50383932,
                   0.5404183 , 0.43275976],
                  [0.36348169, 0.3696986 , 0.60762375, ..., 0.61081735,
                   0.61774329, 0.47810857],
                  [0.41910992, 0.3370959 , 0.51683711, ..., 0.63254534,
                   0.63251832, 0.37372364],
                  ...,
                  [0.37155715, 0.18033725, 0.6357291 , ..., 0.52373938,
                   0.57423102, 0.37619612],
                  [0.31930178, 0.181388  , 0.58734606, ..., 0.44433253,
                   0.5247373 , 0.34849273],
                  [0.35606613, 0.28678965, 0.67841064, ..., 0.75105153,
                   0.76967316, 0.41755699]],
          
                 [[0.35077423, 0.20990227, 0.69572652, ..., 0.67417267,
                   0.7237621 , 0.36555445],
                  [0.26014989, 0.20870266, 0.71619203, ..., 0.63645155,
                   0.66626863, 0.49046362],
                  [0.54851081, 0.35499039, 0.51979175, ..., 0.73475424,
                   0.70638391, 0.26082117],
                  ...,
                  [0.54483632, 0.39798298, 0.73459157, ..., 0.72582073,
                   0.72964516, 0.4424017 ],
                  [0.49580194, 0.33216402, 0.61279042, ..., 0.66320592,
                   0.73867943, 0.32134157],
                  [0.45334239, 0.12582742, 0.59087079, ..., 0.72565421,
                   0.69241571, 0.31111641]],
          
                 [[0.38859158, 0.27274337, 0.62694182, ..., 0.71623942,
                   0.71286761, 0.51480671],
                  [0.33542055, 0.20310077, 0.63505131, ..., 0.63727424,
                   0.60658696, 0.38693233],
                  [0.57092553, 0.36838244, 0.65558424, ..., 0.7776215 ,
                   0.81879732, 0.42196867],
                  ...,
                  [0.41075375, 0.29736221, 0.43971402, ..., 0.83029583,
                   0.81630679, 0.33875661],
                  [0.64368704, 0.48558788, 0.62404084, ..., 0.83050419,
                   0.84598416, 0.30180419],
                  [0.64368704, 0.48558788, 0.62404084, ..., 0.83050419,
                   0.84598416, 0.30180419]]])
      • created_at :
        2020-06-20T10:35:36.555638
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        18.211029291152954
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • win
          (chain, draw, replay)
          int64
          0 0 1 1 0 0 1 0 ... 1 0 1 0 1 1 1 0
          array([[[0, 0, 1, ..., 1, 0, 0],
                  [1, 0, 0, ..., 1, 0, 0],
                  [0, 0, 1, ..., 1, 0, 0],
                  ...,
                  [1, 0, 0, ..., 1, 1, 1],
                  [1, 1, 1, ..., 1, 1, 1],
                  [0, 0, 1, ..., 1, 1, 1]],
          
                 [[1, 0, 0, ..., 0, 1, 0],
                  [1, 0, 1, ..., 1, 1, 0],
                  [0, 0, 1, ..., 1, 1, 0],
                  ...,
                  [1, 0, 1, ..., 0, 0, 1],
                  [1, 0, 1, ..., 1, 1, 0],
                  [1, 0, 1, ..., 0, 1, 0]],
          
                 [[1, 1, 0, ..., 0, 0, 0],
                  [1, 0, 1, ..., 1, 1, 0],
                  [0, 1, 0, ..., 1, 1, 1],
                  ...,
                  [1, 0, 0, ..., 1, 1, 0],
                  [0, 1, 1, ..., 1, 1, 0],
                  [1, 0, 0, ..., 1, 1, 0]],
          
                 [[0, 0, 1, ..., 1, 1, 1],
                  [0, 0, 1, ..., 1, 0, 0],
                  [0, 1, 0, ..., 1, 0, 1],
                  ...,
                  [0, 0, 0, ..., 0, 1, 1],
                  [1, 0, 0, ..., 1, 0, 0],
                  [0, 0, 0, ..., 1, 1, 0]]])
        • μ
          (chain, draw, race)
          float64
          4.303e+03 3.375e+03 ... 3.955e+03
          array([[[4302.79553938, 3375.01011989, 4048.86315149],
                  [4323.86457361, 3295.74222841, 3954.05048638],
                  [4239.6739907 , 3448.28894514, 4235.71022401],
                  ...,
                  [4250.95500899, 3592.96680679, 3907.78214913],
                  [4321.36051851, 3657.60296464, 4041.53244852],
                  [4378.58347689, 3680.20202035, 4041.44904971]],
          
                 [[4141.06331072, 3385.94471985, 4135.36324411],
                  [4138.80737046, 3670.4073407 , 4045.58916728],
                  [4194.72695819, 3676.40161761, 3931.11602939],
                  ...,
                  [4066.10358294, 3429.85753425, 4004.41005399],
                  [4049.09082588, 3382.29455772, 3954.15834981],
                  [4422.29348522, 3549.2372973 , 4066.31337586]],
          
                 [[4212.20435522, 3476.71136441, 4104.05998443],
                  [4139.66832504, 3371.93545224, 4198.27086105],
                  [4369.19834033, 3797.3129873 , 3828.50248262],
                  ...,
                  [4320.92217993, 3755.9095065 , 4165.54070368],
                  [4231.08308098, 3713.65002654, 3964.55758405],
                  [4274.41509776, 3407.86141075, 3931.29076179]],
          
                 [[4314.0372303 , 3573.73152574, 4058.10772914],
                  [4114.59770596, 3463.36390945, 4018.74209014],
                  [4464.57525582, 3705.14913054, 4089.96639073],
                  ...,
                  [4504.44403668, 3638.42652115, 3911.16769539],
                  [4256.83526394, 3886.43065114, 3954.52402571],
                  [4256.83526394, 3886.43065114, 3954.52402571]]])
        • σ
          (chain, draw, race)
          float64
          140.4 252.7 183.9 ... 72.88 55.78
          array([[[140.36011672, 252.69076651, 183.8904596 ],
                  [161.51391431,  82.67823509, 212.55352477],
                  [108.91799094,  66.69192358,  88.42575348],
                  ...,
                  [ 31.69679346, 101.09097511,  32.56956811],
                  [148.25558444,  50.48937963, 103.02389557],
                  [170.53973503,  42.45131739,   7.22075687]],
          
                 [[ 81.39860974,  97.00223551,   5.23367679],
                  [ 28.60567987, 120.58701662, 119.74595091],
                  [ 24.85236716,  47.00875165,  62.47517088],
                  ...,
                  [ 27.08894035, 109.52428738,  89.74107174],
                  [101.36114868,  44.00684249,  63.21585206],
                  [ 45.44140301,  42.24565628,  32.21911083]],
          
                 [[ 85.15403518,  72.24973621, 101.9819129 ],
                  [ 69.33515359,  91.23129494, 140.7847575 ],
                  [ 45.56776301, 101.34687473,  65.85446419],
                  ...,
                  [ 39.67975301,  28.28842643,  52.09586543],
                  [227.54401728,  35.04100696,  46.01622763],
                  [141.84401665, 229.02600795,   5.01932257]],
          
                 [[170.73574582,   6.64000168, 256.76699449],
                  [ 77.7241646 ,  58.94863209,  63.38158179],
                  [ 92.43500404,  57.06879911,  99.61428138],
                  ...,
                  [ 34.21264796,  52.28070628, 126.57472452],
                  [179.13659055,  72.88096661,  55.7761304 ],
                  [179.13659055,  72.88096661,  55.7761304 ]]])
        • winrate
          (chain, draw, replay)
          float64
          0.3884 0.244 ... 0.846 0.3018
          array([[[0.38840135, 0.24397871, 0.67393861, ..., 0.70745598,
                   0.67221636, 0.41190061],
                  [0.30145528, 0.13670806, 0.50855856, ..., 0.84272985,
                   0.71716256, 0.52386025],
                  [0.27877826, 0.26921766, 0.70873675, ..., 0.69606027,
                   0.57933223, 0.54571002],
                  ...,
                  [0.45417135, 0.32451442, 0.57895556, ..., 0.66816823,
                   0.67136651, 0.31963761],
                  [0.45297858, 0.36337639, 0.79449259, ..., 0.81256357,
                   0.70411153, 0.5422807 ],
                  [0.485852  , 0.36502532, 0.65431758, ..., 0.83608882,
                   0.71723646, 0.38343406]],
          
                 [[0.33521265, 0.20123624, 0.7051384 , ..., 0.50383932,
                   0.5404183 , 0.43275976],
                  [0.36348169, 0.3696986 , 0.60762375, ..., 0.61081735,
                   0.61774329, 0.47810857],
                  [0.41910992, 0.3370959 , 0.51683711, ..., 0.63254534,
                   0.63251832, 0.37372364],
                  ...,
                  [0.37155715, 0.18033725, 0.6357291 , ..., 0.52373938,
                   0.57423102, 0.37619612],
                  [0.31930178, 0.181388  , 0.58734606, ..., 0.44433253,
                   0.5247373 , 0.34849273],
                  [0.35606613, 0.28678965, 0.67841064, ..., 0.75105153,
                   0.76967316, 0.41755699]],
          
                 [[0.35077423, 0.20990227, 0.69572652, ..., 0.67417267,
                   0.7237621 , 0.36555445],
                  [0.26014989, 0.20870266, 0.71619203, ..., 0.63645155,
                   0.66626863, 0.49046362],
                  [0.54851081, 0.35499039, 0.51979175, ..., 0.73475424,
                   0.70638391, 0.26082117],
                  ...,
                  [0.54483632, 0.39798298, 0.73459157, ..., 0.72582073,
                   0.72964516, 0.4424017 ],
                  [0.49580194, 0.33216402, 0.61279042, ..., 0.66320592,
                   0.73867943, 0.32134157],
                  [0.45334239, 0.12582742, 0.59087079, ..., 0.72565421,
                   0.69241571, 0.31111641]],
          
                 [[0.38859158, 0.27274337, 0.62694182, ..., 0.71623942,
                   0.71286761, 0.51480671],
                  [0.33542055, 0.20310077, 0.63505131, ..., 0.63727424,
                   0.60658696, 0.38693233],
                  [0.57092553, 0.36838244, 0.65558424, ..., 0.7776215 ,
                   0.81879732, 0.42196867],
                  ...,
                  [0.41075375, 0.29736221, 0.43971402, ..., 0.83029583,
                   0.81630679, 0.33875661],
                  [0.64368704, 0.48558788, 0.62404084, ..., 0.83050419,
                   0.84598416, 0.30180419],
                  [0.64368704, 0.48558788, 0.62404084, ..., 0.83050419,
                   0.84598416, 0.30180419]]])
      • created_at :
        2020-06-20T10:35:37.090348
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (chain, draw, replay)
          float64
          -0.9457 -0.2797 ... -0.1673 -1.198
          array([[[-0.94571606, -0.27968575, -1.1206696 , ..., -0.34607987,
                   -0.39717502, -0.88697319],
                  [-1.1991336 , -0.14700236, -0.7104125 , ..., -0.17110883,
                   -0.33245274, -0.64653033],
                  [-1.27733859, -0.31363962, -1.23352778, ..., -0.36231903,
                   -0.54587916, -0.60566754],
                  ...,
                  [-0.78928073, -0.39232348, -0.86501689, ..., -0.40321529,
                   -0.39844008, -1.14056741],
                  [-0.79191044, -0.45157668, -1.58227317, ..., -0.20756113,
                   -0.35081851, -0.61197151],
                  [-0.72185124, -0.45417016, -1.0622348 , ..., -0.17902043,
                   -0.3323497 , -0.95858761]],
          
                 [[-1.09299019, -0.22469005, -1.2212492 , ..., -0.68549787,
                   -0.61541181, -0.83757254],
                  [-1.01202636, -0.46155716, -0.93553407, ..., -0.4929573 ,
                   -0.48168229, -0.73791744],
                  [-0.86962207, -0.41112495, -0.72740143, ..., -0.45800338,
                   -0.4580461 , -0.9842387 ],
                  ...,
                  [-0.99005259, -0.1988623 , -1.00985747, ..., -0.64676108,
                   -0.5547235 , -0.97764469],
                  [-1.1416186 , -0.20014505, -0.88514597, ..., -0.81118206,
                   -0.64485752, -1.0541379 ],
                  [-1.03263881, -0.33797888, -1.13447981, ..., -0.28628102,
                   -0.26178932, -0.87333424]],
          
                 [[-1.04761249, -0.23559864, -1.18982837, ..., -0.39426901,
                   -0.32329253, -1.00634002],
                  [-1.34649731, -0.23408148, -1.25945741, ..., -0.45184699,
                   -0.40606233, -0.71240417],
                  [-0.60054829, -0.43849007, -0.73353543, ..., -0.30821921,
                   -0.34759641, -1.34392027],
                  ...,
                  [-0.60726986, -0.50746956, -1.3264854 , ..., -0.32045223,
                   -0.31519695, -0.81553699],
                  [-0.70157875, -0.40371268, -0.94878918, ..., -0.41066975,
                   -0.30289124, -1.13525063],
                  [-0.7911076 , -0.13447746, -0.89372426, ..., -0.32068168,
                   -0.36756877, -1.16758814]],
          
                 [[-0.9452264 , -0.31847587, -0.98602091, ..., -0.33374078,
                   -0.33845955, -0.66396377],
                  [-1.09237016, -0.22702705, -1.00799851, ..., -0.45055519,
                   -0.49990719, -0.94950547],
                  [-0.56049651, -0.45947119, -1.06590574, ..., -0.25151537,
                   -0.1999187 , -0.86282421],
                  ...,
                  [-0.88976139, -0.35291376, -0.57930794, ..., -0.18597321,
                   -0.20296503, -1.08247338],
                  [-0.44054263, -0.66473054, -0.97827477, ..., -0.1857223 ,
                   -0.16725464, -1.19797685],
                  [-0.44054263, -0.66473054, -0.97827477, ..., -0.1857223 ,
                   -0.16725464, -1.19797685]]])
      • created_at :
        2020-06-20T10:35:37.087198
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • step_size_bar
          (chain, draw)
          float64
          0.4374 0.4374 ... 0.4903 0.4903
          array([[0.4374115 , 0.4374115 , 0.4374115 , ..., 0.4374115 , 0.4374115 ,
                  0.4374115 ],
                 [0.45402308, 0.45402308, 0.45402308, ..., 0.45402308, 0.45402308,
                  0.45402308],
                 [0.41388167, 0.41388167, 0.41388167, ..., 0.41388167, 0.41388167,
                  0.41388167],
                 [0.49034327, 0.49034327, 0.49034327, ..., 0.49034327, 0.49034327,
                  0.49034327]])
        • energy_error
          (chain, draw)
          float64
          -1.016 0.3132 ... 0.6163 0.0
          array([[-1.01642236,  0.31318099, -0.14019916, ..., -0.00712864,
                  -0.41741377, -0.08385882],
                 [-0.38042493, -1.50079731, -0.16318778, ..., -0.24735973,
                  -0.2886005 , -0.17678952],
                 [-2.01224887, -0.89066887,  0.47713108, ..., -1.70039887,
                   0.31851951,  0.11482341],
                 [ 1.43938357,  0.2229521 ,  0.32288281, ..., -0.04535445,
                   0.61629039,  0.        ]])
        • step_size
          (chain, draw)
          float64
          0.4386 0.4386 ... 0.425 0.425
          array([[0.43855251, 0.43855251, 0.43855251, ..., 0.43855251, 0.43855251,
                  0.43855251],
                 [0.48249608, 0.48249608, 0.48249608, ..., 0.48249608, 0.48249608,
                  0.48249608],
                 [0.44391835, 0.44391835, 0.44391835, ..., 0.44391835, 0.44391835,
                  0.44391835],
                 [0.42501071, 0.42501071, 0.42501071, ..., 0.42501071, 0.42501071,
                  0.42501071]])
        • max_energy_error
          (chain, draw)
          float64
          -1.287 1.11 -0.4291 ... 1.535 5.196
          array([[-1.28737009,  1.11007453, -0.42910467, ...,  0.91347544,
                   0.52800764,  0.47859559],
                 [-0.48591337, -1.50079731,  2.16250099, ..., -0.24735973,
                   3.77015272, -0.76572754],
                 [-2.328056  ,  1.01810228,  0.80442549, ..., -1.70039887,
                  -0.55804924, 74.25084326],
                 [38.71084628,  1.20965313,  0.49249056, ...,  1.35746487,
                   1.53478843,  5.19565611]])
        • diverging
          (chain, draw)
          bool
          False False False ... False False
          array([[False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False]])
        • depth
          (chain, draw)
          int64
          4 3 3 4 4 3 3 3 ... 3 3 3 3 3 3 3 3
          array([[4, 3, 3, ..., 3, 3, 4],
                 [3, 3, 3, ..., 3, 3, 3],
                 [4, 3, 3, ..., 4, 4, 4],
                 [3, 3, 3, ..., 3, 3, 3]])
        • mean_tree_accept
          (chain, draw)
          float64
          0.9054 0.7214 ... 0.4055 0.07633
          array([[0.90541692, 0.72142566, 0.93134252, ..., 0.85369685, 0.9554831 ,
                  0.86302654],
                 [0.99759711, 0.99963932, 0.88165678, ..., 0.96310244, 0.78523323,
                  0.97673572],
                 [0.99816125, 0.88683585, 0.75217549, ..., 0.96863687, 0.92512264,
                  0.86677524],
                 [0.40260816, 0.83998264, 0.84497975, ..., 0.76832421, 0.4055396 ,
                  0.07633182]])
        • energy
          (chain, draw)
          float64
          356.5 384.7 373.6 ... 368.5 373.4
          array([[356.54520829, 384.72052031, 373.61948961, ..., 390.95997962,
                  395.89754948, 395.0117275 ],
                 [410.94614041, 383.5146222 , 361.83684381, ..., 373.49242948,
                  364.71453224, 360.19568382],
                 [391.28602749, 376.75745726, 387.21260602, ..., 390.37738103,
                  377.07691302, 389.32502442],
                 [358.39179418, 363.878841  , 377.07222589, ..., 378.63812646,
                  368.46859802, 373.42582631]])
        • lp
          (chain, draw)
          float64
          -302.1 -305.8 ... -302.2 -302.2
          array([[-302.08558028, -305.77270943, -300.43477915, ..., -320.70266421,
                  -315.38015305, -311.86956419],
                 [-324.9312429 , -298.99886287, -298.64220017, ..., -301.73942136,
                  -301.70998423, -295.83681186],
                 [-310.88193965, -301.57205804, -313.61330102, ..., -309.33294253,
                  -310.28663405, -315.73379124],
                 [-294.91496388, -306.34122894, -309.38563566, ..., -304.01227822,
                  -302.20722956, -302.20722956]])
        • tree_size
          (chain, draw)
          float64
          15.0 7.0 7.0 15.0 ... 7.0 7.0 7.0
          array([[15.,  7.,  7., ...,  7.,  7., 15.],
                 [ 7.,  7.,  7., ...,  7.,  7.,  7.],
                 [15.,  7.,  7., ..., 15., 15., 15.],
                 [ 7.,  7.,  7., ...,  7.,  7.,  7.]])
      • created_at :
        2020-06-20T10:35:36.562793
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        18.211029291152954
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • μ
          (chain, draw, race)
          float64
          4.487e+03 3.816e+03 ... 4.079e+03
          array([[[4487.3036091 , 3816.4730759 , 3841.54847432],
                  [3678.10941335, 4259.6222888 , 3309.53839094],
                  [4523.44352926, 3771.63792973, 4095.71172882],
                  ...,
                  [3793.7352304 , 3936.80991215, 3897.05804332],
                  [4287.27113474, 4067.38137671, 3856.85673442],
                  [3792.63645476, 3763.38063103, 4079.25539045]]])
        • σ
          (chain, draw, race)
          float64
          10.45 53.54 169.3 ... 210.5 146.2
          array([[[ 10.45030045,  53.53690568, 169.32540234],
                  [ 23.57617238,  10.93212404,  83.18141646],
                  [125.6331917 ,  94.68059879, 168.58509729],
                  ...,
                  [ 54.01739286, 112.35908554, 107.02562404],
                  [144.26356103,  77.82838645,   9.93539497],
                  [ 81.81960096, 210.54208204, 146.24259794]]])
        • winrate
          (chain, draw, replay)
          float64
          0.4452 0.4443 ... 0.4049 0.3675
          array([[[0.44516586, 0.44432904, 0.49543905, ..., 0.79673329,
                   0.80140205, 0.28212387],
                  [0.7972168 , 0.68737573, 0.21071926, ..., 0.31760374,
                   0.3228919 , 0.08274033],
                  [0.46947403, 0.43159697, 0.78947532, ..., 0.82439068,
                   0.80940984, 0.32718542],
                  ...,
                  [0.74439685, 0.57396175, 0.48594935, ..., 0.37104134,
                   0.37754386, 0.3333573 ],
                  [0.70701564, 0.56655281, 0.54098671, ..., 0.57389202,
                   0.76269576, 0.26823939],
                  [0.59530994, 0.28697282, 0.72372083, ..., 0.36763267,
                   0.40492739, 0.36749525]]])
      • created_at :
        2020-06-20T10:35:37.093692
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • replay: 138
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (chain, draw, replay)
          int64
          1 1 0 0 1 1 1 0 ... 0 0 0 1 1 0 0 0
          array([[[1, 1, 0, ..., 1, 1, 0],
                  [1, 1, 0, ..., 0, 0, 0],
                  [1, 0, 0, ..., 1, 1, 0],
                  ...,
                  [1, 1, 0, ..., 0, 0, 0],
                  [1, 1, 0, ..., 1, 0, 0],
                  [0, 0, 0, ..., 0, 0, 0]]])
      • created_at :
        2020-06-20T10:35:37.095318
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 138
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (replay)
          float64
          1.0 0.0 0.0 1.0 ... 1.0 1.0 1.0 1.0
          array([1., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1.,
                 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0.,
                 0., 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 1.,
                 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1.,
                 1., 1., 0., 1., 1., 0., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0.,
                 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
                 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 1., 1.,
                 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1., 0., 1., 1.,
                 1., 1.])
      • created_at :
        2020-06-20T10:35:37.096098
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 138
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • enemy_race
          (replay)
          int32
          1 1 2 2 1 1 2 1 ... 2 2 0 2 2 0 0 2
          array([1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 0, 2, 2, 0, 0, 2, 0, 2,
                 2, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 1, 1, 2, 2, 2, 1, 0,
                 0, 1, 0, 2, 2, 2, 1, 0, 2, 1, 0, 2, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2,
                 1, 2, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 2, 1,
                 2, 1, 0, 2, 2, 2, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 2,
                 0, 1, 0, 0, 2, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 2, 0, 1, 2, 2,
                 0, 2, 2, 0, 0, 2], dtype=int32)
        • enemy_mmr
          (replay)
          int32
          3748 3946 3802 ... 3977 3937 4240
          array([3748, 3946, 3802, 3816, 3701, 3861, 3907, 4066, 3757, 4350, 3964,
                 3894, 3932, 3952, 3955, 3912, 3744, 3492, 4642, 3756, 3664, 3769,
                 3871, 3631, 3631, 3685, 3626, 3647, 3626, 3736, 3784, 3856, 3866,
                 3847, 3883, 3761, 3686, 3827, 3771, 3752, 3803, 3922, 3888, 3900,
                 3962, 3992, 3798, 3797, 3790, 3966, 3881, 3823, 3904, 3920, 3907,
                 3961, 3874, 3570, 4359, 4009, 3859, 3988, 3885, 4020, 3935, 3908,
                 4596, 4851, 3941, 3808, 3942, 3854, 3956, 3976, 3998, 3953, 4068,
                 3960, 4016, 4055, 3925, 4104, 3989, 4001, 4237, 4161, 4024, 4108,
                 4125, 4028, 4012, 3992, 4144, 4029, 4051, 4131, 4407, 4037, 3965,
                 3944, 4169, 3882, 4018, 4066, 3828, 3957, 4181, 4160, 3886, 3963,
                 3875, 3956, 3976, 3953, 3757, 4007, 3911, 3967, 4935, 3898, 3880,
                 3927, 3948, 3833, 3894, 3782, 3786, 3845, 3863, 3966, 3864, 3843,
                 3840, 4033, 3914, 3977, 3937, 4240], dtype=int32)
      • created_at :
        2020-06-20T10:35:37.097169
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

That InferenceData ArviZ object lets us see everything the model picked up. It’s really, really neat.

We had a few divergences; not too many, though Let’s take a look at how the sampling went:

var_names = "μ σ".split()
az.plot_trace(output, var_names=var_names);

az.summary(output, var_names = var_names)
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_mean ess_sd ess_bulk ess_tail r_hat
μ[0] 4275.797 116.495 4066.919 4504.642 1.418 1.005 6750.0 6715.0 6767.0 4891.0 1.0
μ[1] 3625.102 122.610 3403.476 3865.610 1.407 0.995 7597.0 7597.0 7622.0 4916.0 1.0
μ[2] 3984.044 105.523 3785.491 4182.183 1.353 0.957 6082.0 6082.0 6082.0 4802.0 1.0
σ[0] 78.531 59.788 0.019 184.598 0.819 0.692 5331.0 3737.0 4413.0 3198.0 1.0
σ[1] 76.320 58.370 0.030 180.889 0.773 0.547 5699.0 5699.0 4607.0 3176.0 1.0
σ[2] 85.882 64.475 0.266 201.367 0.970 0.686 4420.0 4420.0 3717.0 3351.0 1.0
az.plot_pair(output, var_names='μ', divergences=True);

az.plot_pair(output, var_names='σ', divergences=True);

Slower sampling

Once again, we have a few divergences, but they don’t seem to say anything concrete as far as I can tell. These could be false positives; we could increase target_accept, which is basically an inverse timestep for the simulation (shorter timesteps usually mean larger accuracy at the cost of more computational time).

with split_model:
    trace = pm.sample(2000, tune=2000, chains=4, random_seed=1, target_accept=0.9)
    output = az.from_pymc3(trace=trace,
                           prior=pm.sample_prior_predictive(2000 , var_names=predictive_var_names, random_seed=1),
                           posterior_predictive=pm.sample_posterior_predictive(trace, var_names=predictive_var_names, random_seed=1),
                          )
output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 2 jobs)
NUTS: [helper, σ, μ]
100.00% [16000/16000 00:34<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 2_000 tune and 2_000 draw iterations (8_000 + 8_000 draws total) took 34 seconds.
100.00% [8000/8000 00:07<00:00]
arviz.InferenceData
    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • μ
          (chain, draw, race)
          float64
          4.192e+03 3.663e+03 ... 3.958e+03
          array([[[4191.82605585, 3662.56685124, 3976.78290968],
                  [4257.97578329, 3613.94126582, 3981.76487183],
                  [4298.83077594, 3669.01287593, 3980.01052311],
                  ...,
                  [4166.91919982, 3629.16545514, 3964.33087075],
                  [4253.24812539, 3840.22261721, 3984.01357522],
                  [4227.20217537, 3489.99729021, 3910.30300021]],
          
                 [[4239.12879032, 3801.8761701 , 4067.56023194],
                  [4217.78015886, 3898.22751246, 3973.50400805],
                  [4484.11725818, 3779.99293822, 4016.31411823],
                  ...,
                  [4258.99732702, 3596.77273898, 4039.48381277],
                  [4274.35096163, 3547.99306416, 4022.58218725],
                  [4212.3466215 , 3574.92200423, 4175.91083343]],
          
                 [[4108.92610165, 3552.9706627 , 3829.50707736],
                  [4384.06283782, 3691.27109238, 4135.1039508 ],
                  [4446.44987489, 3741.85060453, 4086.13686973],
                  ...,
                  [4335.40009373, 3731.15106938, 3962.55328323],
                  [4307.456269  , 3749.69690735, 4120.08021688],
                  [4190.8374136 , 3794.59313277, 4101.57910293]],
          
                 [[4272.61598805, 3719.24049327, 4048.31502213],
                  [4228.36765588, 3600.03935061, 3874.50140572],
                  [4293.21198926, 3603.78459054, 3897.61309849],
                  ...,
                  [4389.92203176, 3410.26310882, 3951.09193896],
                  [4282.64108689, 3725.26346768, 3981.54442129],
                  [4266.90287295, 3532.39900759, 3958.19034856]]])
        • helper
          (chain, draw, replay)
          float64
          -0.3586 -1.85 ... 0.02351 -1.151
          array([[[-3.58569651e-01, -1.84989802e+00,  2.29563873e-01, ...,
                    9.50090310e-01,  1.56085276e+00,  8.22590552e-01],
                  [ 9.06258881e-01, -5.14902909e-01, -1.04868401e-01, ...,
                   -1.62571690e+00,  6.70900325e-01, -1.51883191e-01],
                  [-6.40631182e-01,  6.12057059e-01,  3.17121019e-01, ...,
                    1.36327897e+00, -1.11966799e+00,  1.72247767e-01],
                  ...,
                  [ 1.20412968e+00, -3.51638910e-01,  5.88442964e-01, ...,
                    9.28011498e-02, -5.64504440e-01, -7.09598482e-01],
                  [-1.96695828e+00, -6.73132651e-01,  4.44071882e-02, ...,
                    3.86901656e-01,  4.41467830e-01,  3.20274641e-01],
                  [ 1.42440822e+00,  6.00126327e-01, -3.94391564e-01, ...,
                   -4.39375166e-01, -4.45562672e-01, -1.77496465e+00]],
          
                 [[ 6.54007611e-01, -8.24447681e-01,  1.05125375e+00, ...,
                    1.17847687e+00, -6.69548837e-01, -1.15841741e+00],
                  [ 1.37685327e+00, -9.87904032e-01, -1.09741324e-02, ...,
                    2.88743415e-01, -1.12658686e+00, -1.38173770e+00],
                  [-3.18193693e-03,  2.41073061e-01, -1.22760501e-01, ...,
                   -7.64371279e-02, -4.78951612e-01,  2.60067221e-01],
                  ...,
                  [-6.27546050e-01,  9.98509713e-01, -1.11550676e+00, ...,
                   -2.26676217e-01, -1.38838943e-01, -9.93353582e-01],
                  [ 5.13204543e-01, -1.58241396e+00, -1.08417712e-01, ...,
                    4.68034271e-01,  3.76969235e-01, -4.04638391e-01],
                  [-1.76788541e-01,  9.32990055e-01,  4.28135341e-05, ...,
                    1.02912759e+00, -3.42634612e-02, -2.14568024e-01]],
          
                 [[ 8.77482038e-01,  5.66063006e-01, -4.11165561e-01, ...,
                    5.01402289e-01, -3.55815931e-02, -8.21029200e-01],
                  [-6.08466799e-01, -1.15355056e+00,  1.68031486e+00, ...,
                   -4.10245950e-01,  4.59513709e-01,  8.49965623e-01],
                  [-7.64269406e-01, -1.05121556e+00,  7.99346402e-01, ...,
                    1.65078612e-01,  1.01143791e+00, -1.84026189e-01],
                  ...,
                  [ 5.68352677e-01, -6.28746748e-01,  7.97804290e-01, ...,
                   -3.36482081e-01,  1.62106906e-01, -2.15009903e+00],
                  [ 1.59171993e+00, -3.55615603e-02,  2.37360931e+00, ...,
                   -1.80848977e+00,  7.13096344e-01, -2.17528450e-01],
                  [ 4.66494945e-01, -2.97893117e-01,  2.06685738e+00, ...,
                   -9.37338897e-01,  1.00084739e+00, -3.86379260e-01]],
          
                 [[ 1.67365693e+00,  7.21526403e-01,  1.06145479e+00, ...,
                    5.28478191e-01,  1.54626828e+00, -5.33971064e-01],
                  [-1.32996411e+00,  4.15343513e-01, -1.47097832e+00, ...,
                   -9.36878676e-01, -1.04900111e+00,  8.36467466e-01],
                  [-1.11769228e-01,  2.42671312e+00, -8.76540192e-01, ...,
                   -2.52865488e-01, -1.46753688e+00, -1.76933513e-01],
                  ...,
                  [ 8.56890908e-02,  2.39181911e-01, -8.68460585e-01, ...,
                   -2.21486333e+00, -1.43487594e-01, -5.96289347e-01],
                  [ 7.22463030e-02, -1.56334275e-01,  5.66600313e-01, ...,
                    2.37982042e+00,  3.10878601e-01,  1.35762265e+00],
                  [-4.91907389e-02,  3.76161952e-01, -6.80508953e-01, ...,
                   -1.94831032e+00,  2.35097946e-02, -1.15050624e+00]]])
        • σ
          (chain, draw, race)
          float64
          204.2 76.8 32.59 ... 31.32 94.91
          array([[[2.04242226e+02, 7.68008837e+01, 3.25943353e+01],
                  [4.18171668e+01, 7.45761818e+01, 1.19526142e+02],
                  [8.97354023e+01, 6.62820028e+01, 3.64307641e+01],
                  ...,
                  [1.60576390e+02, 2.31497996e+00, 2.58897070e+01],
                  [1.78390681e+01, 8.50597976e+00, 1.68203140e+02],
                  [7.31420294e+01, 1.27927535e+02, 4.83013062e+00]],
          
                 [[1.09849691e+02, 2.82949807e+01, 1.37658429e+02],
                  [1.87770432e+02, 3.34908584e+01, 1.10070610e+02],
                  [3.44636450e+01, 2.64758758e+02, 6.32728066e+01],
                  ...,
                  [1.08545694e+02, 1.90329689e+02, 7.53971341e+00],
                  [9.69128164e+01, 1.47267519e+02, 4.71936992e+01],
                  [3.24385154e+01, 1.87935685e+02, 1.02406167e+02]],
          
                 [[2.49993613e+02, 7.63470122e+01, 1.28194539e+02],
                  [1.22753266e+02, 1.00566005e+02, 1.26635005e+01],
                  [3.82276057e+01, 5.74721016e+01, 1.87588800e+01],
                  ...,
                  [4.63901695e+01, 1.47619023e+00, 1.38726849e+02],
                  [2.26734894e+02, 5.42758590e+01, 2.25301282e+01],
                  [5.77676739e+01, 1.64411686e+02, 8.20206053e+01]],
          
                 [[5.11084577e+01, 2.58581172e+02, 6.86281538e+01],
                  [1.08308154e+02, 2.44693323e-01, 1.58790827e+02],
                  [1.99750479e+02, 1.51796727e+00, 9.00794021e+01],
                  ...,
                  [6.66429227e+01, 1.34972643e+02, 9.20364312e+01],
                  [1.06224961e+02, 3.81711978e+01, 9.23637668e+01],
                  [4.57938897e+01, 3.13248774e+01, 9.49120778e+01]]])
        • MMR
          (chain, draw, replay)
          float64
          3.635e+03 3.52e+03 ... 3.849e+03
          array([[[3635.02838514, 3520.49304836, 3984.26539153, ...,
                   4385.87461587, 4510.6180973 , 4003.59470195],
                  [3681.5265929 , 3575.54177283, 3969.2303564 , ...,
                   4189.99290857, 4286.03093408, 3963.61085993],
                  [3626.55055818, 3709.58124363, 3991.56348415, ...,
                   4421.16516306, 4198.35691828, 3986.28564086],
                  ...,
                  [3631.95299122, 3628.35141811, 3979.56548664, ...,
                   4181.82087345, 4076.27311465, 3945.95957399],
                  [3823.49170987, 3834.49696451, 3991.48300371, ...,
                   4260.15009037, 4261.12350006, 4037.88477541],
                  [3672.21832284, 3566.76997226, 3908.39803744, ...,
                   4195.06538405, 4194.6128173 , 3901.72968909]],
          
                 [[3820.3813028 , 3778.54843892, 4212.27417155, ...,
                   4368.58411007, 4165.57905776, 3908.09431138],
                  [3944.33951023, 3865.14175844, 3972.2960786 , ...,
                   4271.99763448, 4006.24045846, 3821.41529706],
                  [3779.15049255, 3843.81914225, 4008.54671677, ...,
                   4481.48295614, 4467.61083985, 4032.76930122],
                  ...,
                  [3477.33209465, 3786.8187819 , 4031.07321149, ...,
                   4234.3925996 , 4243.92695754, 4031.99421144],
                  [3623.57142381, 3314.95488652, 4017.46555434, ...,
                   4319.70948106, 4310.88411195, 4003.48580472],
                  [3541.69712857, 3750.26412962, 4175.9152178 , ...,
                   4245.72999278, 4211.23516568, 4153.93774455]],
          
                 [[3619.96379451, 3596.18788193, 3776.79789789, ...,
                   4234.27347158, 4100.03093064, 3724.25561768],
                  [3630.08001753, 3575.26312196, 4156.3826188 , ...,
                   4333.70380745, 4440.4696466 , 4145.86749087],
                  [3697.92643555, 3681.43503719, 4101.13171294, ...,
                   4452.76043496, 4485.11472444, 4082.68474453],
                  ...,
                  [3731.99006605, 3730.22291957, 4073.23015874, ...,
                   4319.79063297, 4342.92026057, 3664.27681853],
                  [3836.08887366, 3747.76677311, 4173.55793881, ...,
                   3897.40853377, 4469.14009285, 4115.17927302],
                  [3871.290353  , 3745.61602321, 4271.10399599, ...,
                   4136.6895259 , 4248.65403921, 4069.88804217]],
          
                 [[4152.01666383, 3905.81363602, 4121.16070472, ...,
                   4299.62569332, 4351.64337494, 4011.66957382],
                  [3599.71391728, 3600.1409824 , 3640.92354229, ...,
                   4126.8960557 , 4114.7522814 , 4007.32476636],
                  [3603.61492851, 3607.46826165, 3818.6548821 , ...,
                   4242.70198684, 4000.07079332, 3881.67503342],
                  ...,
                  [3421.82879184, 3442.54612337, 3871.1619261 , ...,
                   4242.31706615, 4380.35959915, 3896.21159555],
                  [3728.0211956 , 3719.29600116, 4033.87776046, ...,
                   4535.43741766, 4315.66415412, 4106.93956281],
                  [3530.85811372, 3544.18223464, 3893.60182986, ...,
                   4177.68216515, 4267.9794779 , 3848.99341069]]])
        • MMR_diff
          (chain, draw, replay)
          float64
          -113.0 -425.5 ... 331.0 -391.0
          array([[[-112.97161486, -425.50695164,  182.26539153, ...,
                    408.87461587,  573.6180973 , -236.40529805],
                  [ -66.4734071 , -370.45822717,  167.2303564 , ...,
                    212.99290857,  349.03093408, -276.38914007],
                  [-121.44944182, -236.41875637,  189.56348415, ...,
                    444.16516306,  261.35691828, -253.71435914],
                  ...,
                  [-116.04700878, -317.64858189,  177.56548664, ...,
                    204.82087345,  139.27311465, -294.04042601],
                  [  75.49170987, -111.50303549,  189.48300371, ...,
                    283.15009037,  324.12350006, -202.11522459],
                  [ -75.78167716, -379.23002774,  106.39803744, ...,
                    218.06538405,  257.6128173 , -338.27031091]],
          
                 [[  72.3813028 , -167.45156108,  410.27417155, ...,
                    391.58411007,  228.57905776, -331.90568862],
                  [ 196.33951023,  -80.85824156,  170.2960786 , ...,
                    294.99763448,   69.24045846, -418.58470294],
                  [  31.15049255, -102.18085775,  206.54671677, ...,
                    504.48295614,  530.61083985, -207.23069878],
                  ...,
                  [-270.66790535, -159.1812181 ,  229.07321149, ...,
                    257.3925996 ,  306.92695754, -208.00578856],
                  [-124.42857619, -631.04511348,  215.46555434, ...,
                    342.70948106,  373.88411195, -236.51419528],
                  [-206.30287143, -195.73587038,  373.9152178 , ...,
                    268.72999278,  274.23516568,  -86.06225545]],
          
                 [[-128.03620549, -349.81211807,  -25.20210211, ...,
                    257.27347158,  163.03093064, -515.74438232],
                  [-117.91998247, -370.73687804,  354.3826188 , ...,
                    356.70380745,  503.4696466 ,  -94.13250913],
                  [ -50.07356445, -264.56496281,  299.13171294, ...,
                    475.76043496,  548.11472444, -157.31525547],
                  ...,
                  [ -16.00993395, -215.77708043,  271.23015874, ...,
                    342.79063297,  405.92026057, -575.72318147],
                  [  88.08887366, -198.23322689,  371.55793881, ...,
                    -79.59146623,  532.14009285, -124.82072698],
                  [ 123.290353  , -200.38397679,  469.10399599, ...,
                    159.6895259 ,  311.65403921, -170.11195783]],
          
                 [[ 404.01666383,  -40.18636398,  319.16070472, ...,
                    322.62569332,  414.64337494, -228.33042618],
                  [-148.28608272, -345.8590176 , -161.07645771, ...,
                    149.8960557 ,  177.7522814 , -232.67523364],
                  [-144.38507149, -338.53173835,   16.6548821 , ...,
                    265.70198684,   63.07079332, -358.32496658],
                  ...,
                  [-326.17120816, -503.45387663,   69.1619261 , ...,
                    265.31706615,  443.35959915, -343.78840445],
                  [ -19.9788044 , -226.70399884,  231.87776046, ...,
                    558.43741766,  378.66415412, -133.06043719],
                  [-217.14188628, -401.81776536,   91.60182986, ...,
                    200.68216515,  330.9794779 , -391.00658931]]])
        • winrate
          (chain, draw, replay)
          float64
          0.4266 0.2472 ... 0.7039 0.2644
          array([[[0.4266338 , 0.24724307, 0.61701816, ..., 0.74456852,
                   0.81771078, 0.35010631],
                  [0.45662615, 0.2750138 , 0.60768   , ..., 0.63583029,
                   0.71366787, 0.32669033],
                  [0.42121652, 0.3500983 , 0.62152047, ..., 0.7617306 ,
                   0.6645996 , 0.33987251],
                  ...,
                  [0.42466653, 0.30340175, 0.61410799, ..., 0.63086488,
                   0.59010958, 0.31661356],
                  [0.54922247, 0.42757404, 0.62147094, ..., 0.67718895,
                   0.70016698, 0.37078528],
                  [0.4505897 , 0.2704613 , 0.56915351, ..., 0.63889797,
                   0.66241233, 0.29212013]],
          
                 [[0.54720674, 0.39218202, 0.74526436, ..., 0.73586936,
                   0.64522013, 0.29557572],
                  [0.62568207, 0.44730353, 0.60959075, ..., 0.68392811,
                   0.54516971, 0.25062949],
                  [0.52036562, 0.4335544 , 0.63191587, ..., 0.78918453,
                   0.80033389, 0.36766795],
                  ...,
                  [0.3299917 , 0.39735231, 0.64551605, ..., 0.66228347,
                   0.69063659, 0.36719657],
                  [0.4193173 , 0.16095004, 0.63732707, ..., 0.71027596,
                   0.72676986, 0.35004148],
                  [0.36823254, 0.37468792, 0.72678602, ..., 0.66888622,
                   0.67206874, 0.44393964]],
          
                 [[0.41702061, 0.28591462, 0.48352018, ..., 0.66221375,
                   0.6050573 , 0.20595485],
                  [0.4234696 , 0.27486845, 0.71652076, ..., 0.71775279,
                   0.78874307, 0.43873325],
                  [0.46729148, 0.33353189, 0.68626179, ..., 0.77640925,
                   0.8075522 , 0.39852206],
                  ...,
                  [0.48952874, 0.36248454, 0.67033349, ..., 0.71031966,
                   0.74309555, 0.18146961],
                  [0.55736901, 0.37315816, 0.72555955, ..., 0.44812312,
                   0.80097255, 0.41906748],
                  [0.57995735, 0.37184275, 0.77337113, ..., 0.60296614,
                   0.69327302, 0.39052391]],
          
                 [[0.74214352, 0.47373655, 0.69743382, ..., 0.69934358,
                   0.74742865, 0.35492881],
                  [0.40419849, 0.28803111, 0.39616541, ..., 0.59681559,
                   0.61422381, 0.35233025],
                  [0.40665901, 0.2919787 , 0.51089296, ..., 0.66712911,
                   0.54116397, 0.28138867],
                  ...,
                  [0.29870941, 0.2112638 , 0.54511876, ..., 0.66690541,
                   0.76134783, 0.28914344],
                  [0.48693397, 0.35590376, 0.64719344, ..., 0.81171504,
                   0.72924646, 0.41382809],
                  [0.3616597 , 0.25895906, 0.55963552, ..., 0.62833948,
                   0.70391943, 0.26442445]]])
      • created_at :
        2020-06-20T14:25:20.065376
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        34.35768222808838
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • win
          (chain, draw, replay)
          int64
          0 0 1 1 0 0 1 0 ... 1 0 1 0 0 1 1 0
          array([[[0, 0, 1, ..., 1, 1, 0],
                  [1, 1, 1, ..., 1, 0, 1],
                  [0, 0, 1, ..., 1, 0, 1],
                  ...,
                  [1, 0, 0, ..., 1, 1, 1],
                  [0, 1, 1, ..., 1, 1, 0],
                  [0, 0, 1, ..., 1, 1, 1]],
          
                 [[0, 0, 0, ..., 1, 1, 0],
                  [0, 0, 1, ..., 1, 1, 0],
                  [1, 0, 1, ..., 1, 1, 0],
                  ...,
                  [1, 0, 1, ..., 0, 0, 1],
                  [1, 0, 1, ..., 1, 1, 0],
                  [1, 0, 1, ..., 0, 1, 0]],
          
                 [[1, 1, 1, ..., 0, 0, 0],
                  [1, 0, 1, ..., 1, 1, 0],
                  [1, 1, 0, ..., 1, 1, 1],
                  ...,
                  [0, 0, 0, ..., 1, 1, 0],
                  [1, 1, 1, ..., 0, 1, 0],
                  [0, 1, 1, ..., 1, 1, 0]],
          
                 [[1, 1, 1, ..., 1, 1, 0],
                  [0, 0, 0, ..., 1, 0, 0],
                  [1, 1, 0, ..., 1, 0, 1],
                  ...,
                  [0, 0, 1, ..., 0, 1, 1],
                  [0, 0, 0, ..., 1, 0, 0],
                  [1, 0, 0, ..., 1, 1, 0]]])
        • μ
          (chain, draw, race)
          float64
          4.192e+03 3.663e+03 ... 3.958e+03
          array([[[4191.82605585, 3662.56685124, 3976.78290968],
                  [4257.97578329, 3613.94126582, 3981.76487183],
                  [4298.83077594, 3669.01287593, 3980.01052311],
                  ...,
                  [4166.91919982, 3629.16545514, 3964.33087075],
                  [4253.24812539, 3840.22261721, 3984.01357522],
                  [4227.20217537, 3489.99729021, 3910.30300021]],
          
                 [[4239.12879032, 3801.8761701 , 4067.56023194],
                  [4217.78015886, 3898.22751246, 3973.50400805],
                  [4484.11725818, 3779.99293822, 4016.31411823],
                  ...,
                  [4258.99732702, 3596.77273898, 4039.48381277],
                  [4274.35096163, 3547.99306416, 4022.58218725],
                  [4212.3466215 , 3574.92200423, 4175.91083343]],
          
                 [[4108.92610165, 3552.9706627 , 3829.50707736],
                  [4384.06283782, 3691.27109238, 4135.1039508 ],
                  [4446.44987489, 3741.85060453, 4086.13686973],
                  ...,
                  [4335.40009373, 3731.15106938, 3962.55328323],
                  [4307.456269  , 3749.69690735, 4120.08021688],
                  [4190.8374136 , 3794.59313277, 4101.57910293]],
          
                 [[4272.61598805, 3719.24049327, 4048.31502213],
                  [4228.36765588, 3600.03935061, 3874.50140572],
                  [4293.21198926, 3603.78459054, 3897.61309849],
                  ...,
                  [4389.92203176, 3410.26310882, 3951.09193896],
                  [4282.64108689, 3725.26346768, 3981.54442129],
                  [4266.90287295, 3532.39900759, 3958.19034856]]])
        • σ
          (chain, draw, race)
          float64
          204.2 76.8 32.59 ... 31.32 94.91
          array([[[2.04242226e+02, 7.68008837e+01, 3.25943353e+01],
                  [4.18171668e+01, 7.45761818e+01, 1.19526142e+02],
                  [8.97354023e+01, 6.62820028e+01, 3.64307641e+01],
                  ...,
                  [1.60576390e+02, 2.31497996e+00, 2.58897070e+01],
                  [1.78390681e+01, 8.50597976e+00, 1.68203140e+02],
                  [7.31420294e+01, 1.27927535e+02, 4.83013062e+00]],
          
                 [[1.09849691e+02, 2.82949807e+01, 1.37658429e+02],
                  [1.87770432e+02, 3.34908584e+01, 1.10070610e+02],
                  [3.44636450e+01, 2.64758758e+02, 6.32728066e+01],
                  ...,
                  [1.08545694e+02, 1.90329689e+02, 7.53971341e+00],
                  [9.69128164e+01, 1.47267519e+02, 4.71936992e+01],
                  [3.24385154e+01, 1.87935685e+02, 1.02406167e+02]],
          
                 [[2.49993613e+02, 7.63470122e+01, 1.28194539e+02],
                  [1.22753266e+02, 1.00566005e+02, 1.26635005e+01],
                  [3.82276057e+01, 5.74721016e+01, 1.87588800e+01],
                  ...,
                  [4.63901695e+01, 1.47619023e+00, 1.38726849e+02],
                  [2.26734894e+02, 5.42758590e+01, 2.25301282e+01],
                  [5.77676739e+01, 1.64411686e+02, 8.20206053e+01]],
          
                 [[5.11084577e+01, 2.58581172e+02, 6.86281538e+01],
                  [1.08308154e+02, 2.44693323e-01, 1.58790827e+02],
                  [1.99750479e+02, 1.51796727e+00, 9.00794021e+01],
                  ...,
                  [6.66429227e+01, 1.34972643e+02, 9.20364312e+01],
                  [1.06224961e+02, 3.81711978e+01, 9.23637668e+01],
                  [4.57938897e+01, 3.13248774e+01, 9.49120778e+01]]])
        • winrate
          (chain, draw, replay)
          float64
          0.4266 0.2472 ... 0.7039 0.2644
          array([[[0.4266338 , 0.24724307, 0.61701816, ..., 0.74456852,
                   0.81771078, 0.35010631],
                  [0.45662615, 0.2750138 , 0.60768   , ..., 0.63583029,
                   0.71366787, 0.32669033],
                  [0.42121652, 0.3500983 , 0.62152047, ..., 0.7617306 ,
                   0.6645996 , 0.33987251],
                  ...,
                  [0.42466653, 0.30340175, 0.61410799, ..., 0.63086488,
                   0.59010958, 0.31661356],
                  [0.54922247, 0.42757404, 0.62147094, ..., 0.67718895,
                   0.70016698, 0.37078528],
                  [0.4505897 , 0.2704613 , 0.56915351, ..., 0.63889797,
                   0.66241233, 0.29212013]],
          
                 [[0.54720674, 0.39218202, 0.74526436, ..., 0.73586936,
                   0.64522013, 0.29557572],
                  [0.62568207, 0.44730353, 0.60959075, ..., 0.68392811,
                   0.54516971, 0.25062949],
                  [0.52036562, 0.4335544 , 0.63191587, ..., 0.78918453,
                   0.80033389, 0.36766795],
                  ...,
                  [0.3299917 , 0.39735231, 0.64551605, ..., 0.66228347,
                   0.69063659, 0.36719657],
                  [0.4193173 , 0.16095004, 0.63732707, ..., 0.71027596,
                   0.72676986, 0.35004148],
                  [0.36823254, 0.37468792, 0.72678602, ..., 0.66888622,
                   0.67206874, 0.44393964]],
          
                 [[0.41702061, 0.28591462, 0.48352018, ..., 0.66221375,
                   0.6050573 , 0.20595485],
                  [0.4234696 , 0.27486845, 0.71652076, ..., 0.71775279,
                   0.78874307, 0.43873325],
                  [0.46729148, 0.33353189, 0.68626179, ..., 0.77640925,
                   0.8075522 , 0.39852206],
                  ...,
                  [0.48952874, 0.36248454, 0.67033349, ..., 0.71031966,
                   0.74309555, 0.18146961],
                  [0.55736901, 0.37315816, 0.72555955, ..., 0.44812312,
                   0.80097255, 0.41906748],
                  [0.57995735, 0.37184275, 0.77337113, ..., 0.60296614,
                   0.69327302, 0.39052391]],
          
                 [[0.74214352, 0.47373655, 0.69743382, ..., 0.69934358,
                   0.74742865, 0.35492881],
                  [0.40419849, 0.28803111, 0.39616541, ..., 0.59681559,
                   0.61422381, 0.35233025],
                  [0.40665901, 0.2919787 , 0.51089296, ..., 0.66712911,
                   0.54116397, 0.28138867],
                  ...,
                  [0.29870941, 0.2112638 , 0.54511876, ..., 0.66690541,
                   0.76134783, 0.28914344],
                  [0.48693397, 0.35590376, 0.64719344, ..., 0.81171504,
                   0.72924646, 0.41382809],
                  [0.3616597 , 0.25895906, 0.55963552, ..., 0.62833948,
                   0.70391943, 0.26442445]]])
      • created_at :
        2020-06-20T14:25:20.600612
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • replay: 138
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (chain, draw, replay)
          float64
          -0.8518 -0.284 ... -0.3511 -1.33
          array([[[-0.85182925, -0.28401291, -0.9597677 , ..., -0.2949504 ,
                   -0.20124657, -1.04951843],
                  [-0.78389028, -0.32160266, -0.93567745, ..., -0.45282359,
                   -0.33733759, -1.11874255],
                  [-0.86460828, -0.43093415, -0.9715933 , ..., -0.27216232,
                   -0.40857053, -1.07918469],
                  ...,
                  [-0.85645105, -0.36154643, -0.95219772, ..., -0.46066357,
                   -0.52744702, -1.1500733 ],
                  [-0.5992517 , -0.55787188, -0.97146243, ..., -0.38980495,
                   -0.35643643, -0.99213215],
                  [-0.79719812, -0.31534286, -0.84200343, ..., -0.44801051,
                   -0.41186706, -1.23059016]],
          
                 [[-0.6029286 , -0.49787982, -1.36752899, ..., -0.30670267,
                   -0.43816374, -1.21883022],
                  [-0.46891291, -0.59294631, -0.94055973, ..., -0.37990247,
                   -0.60665814, -1.38377958],
                  [-0.6532236 , -0.56837423, -0.99944377, ..., -0.23675511,
                   -0.22272627, -1.00057507],
                  ...,
                  [-1.10868777, -0.50642252, -1.03709221, ..., -0.41206162,
                   -0.37014152, -1.00185797],
                  [-0.86912737, -0.17548503, -1.01425387, ..., -0.3421017 ,
                   -0.31914541, -1.04970362],
                  [-0.99904063, -0.46950443, -1.2975    , ..., -0.40214131,
                   -0.39739466, -0.81206668]],
          
                 [[-0.87461964, -0.33675275, -0.66071906, ..., -0.4121669 ,
                   -0.50243211, -1.58009829],
                  [-0.85927356, -0.32140219, -1.26061639, ..., -0.33163007,
                   -0.23731465, -0.82386367],
                  [-0.76080206, -0.40576299, -1.15919636, ..., -0.25307552,
                   -0.21374759, -0.91999242],
                  ...,
                  [-0.71431211, -0.45017676, -1.10967372, ..., -0.34204019,
                   -0.29693065, -1.70666705],
                  [-0.58452777, -0.46706102, -1.29302097, ..., -0.80268726,
                   -0.2219286 , -0.86972333],
                  [-0.54480071, -0.46496474, -1.48444153, ..., -0.50589424,
                   -0.36633139, -0.94026608]],
          
                 [[-0.29821263, -0.64195333, -1.19545525, ..., -0.35761313,
                   -0.29111643, -1.03583805],
                  [-0.90584921, -0.33972107, -0.50445498, ..., -0.51614711,
                   -0.48739591, -1.04318632],
                  [-0.89978025, -0.3452811 , -0.71517392, ..., -0.40477168,
                   -0.61403296, -1.26801841],
                  ...,
                  [-1.20828404, -0.23732337, -0.7877189 , ..., -0.40510705,
                   -0.27266496, -1.2408324 ],
                  [-0.71962675, -0.43990713, -1.04183536, ..., -0.20860593,
                   -0.31574353, -0.88230464],
                  [-1.01705156, -0.2996994 , -0.82015253, ..., -0.46467469,
                   -0.35109138, -1.33019969]]])
      • created_at :
        2020-06-20T14:25:20.597504
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • step_size_bar
          (chain, draw)
          float64
          0.294 0.294 0.294 ... 0.2907 0.2907
          array([[0.29398781, 0.29398781, 0.29398781, ..., 0.29398781, 0.29398781,
                  0.29398781],
                 [0.32832862, 0.32832862, 0.32832862, ..., 0.32832862, 0.32832862,
                  0.32832862],
                 [0.3100242 , 0.3100242 , 0.3100242 , ..., 0.3100242 , 0.3100242 ,
                  0.3100242 ],
                 [0.29071728, 0.29071728, 0.29071728, ..., 0.29071728, 0.29071728,
                  0.29071728]])
        • energy_error
          (chain, draw)
          float64
          -1.165 0.1154 ... 0.2452 -0.1032
          array([[-1.16545649,  0.11543079,  0.05534909, ..., -0.02356721,
                   0.01416864,  0.22002702],
                 [-0.27486769,  0.46115983,  0.41228911, ..., -0.07802792,
                   0.1259835 , -0.33367031],
                 [-1.04578413,  0.16843381,  0.26006434, ..., -0.22386483,
                  -0.24002094,  0.22646569],
                 [-0.079549  ,  0.96347628,  0.0941145 , ...,  0.06526721,
                   0.24516089, -0.10319888]])
        • step_size
          (chain, draw)
          float64
          0.2628 0.2628 ... 0.3427 0.3427
          array([[0.26275736, 0.26275736, 0.26275736, ..., 0.26275736, 0.26275736,
                  0.26275736],
                 [0.32445057, 0.32445057, 0.32445057, ..., 0.32445057, 0.32445057,
                  0.32445057],
                 [0.33329653, 0.33329653, 0.33329653, ..., 0.33329653, 0.33329653,
                  0.33329653],
                 [0.34267612, 0.34267612, 0.34267612, ..., 0.34267612, 0.34267612,
                  0.34267612]])
        • max_energy_error
          (chain, draw)
          float64
          -1.165 0.2965 ... 0.5785 -0.4783
          array([[-1.16545649,  0.2964833 , -0.21895137, ...,  0.48664513,
                   0.40310784, -0.67851845],
                 [ 0.67112042,  0.55722514,  0.41228911, ..., -0.28722158,
                   0.20634744, -0.3871516 ],
                 [ 1.49793689,  0.32854877,  0.92926063, ...,  1.32199749,
                   7.60500613,  1.06863903],
                 [-0.32793756,  3.07300588,  3.39102021, ...,  0.42629728,
                   0.57845417, -0.47834955]])
        • diverging
          (chain, draw)
          bool
          False False False ... False False
          array([[False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False]])
        • depth
          (chain, draw)
          int64
          4 4 4 4 4 4 4 4 ... 4 4 4 4 4 4 4 4
          array([[4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4]])
        • mean_tree_accept
          (chain, draw)
          float64
          0.9887 0.9228 ... 0.7224 0.9945
          array([[0.9886637 , 0.92280831, 0.97142841, ..., 0.8910868 , 0.88488932,
                  0.93672292],
                 [0.90066886, 0.80011353, 0.90867509, ..., 0.99015461, 0.92949944,
                  0.99230292],
                 [0.95258493, 0.82788819, 0.61444807, ..., 0.95654644, 0.9694625 ,
                  0.6588462 ],
                 [0.99969745, 0.35548557, 0.94576827, ..., 0.83801927, 0.72241791,
                  0.99445689]])
        • energy
          (chain, draw)
          float64
          372.8 372.4 379.1 ... 383.8 366.4
          array([[372.76445605, 372.4047956 , 379.13879775, ..., 388.4625056 ,
                  379.20274373, 363.47543194],
                 [364.17887204, 357.96746207, 377.37892682, ..., 370.05542217,
                  371.67089236, 364.45527508],
                 [376.65409707, 351.05076247, 380.10629174, ..., 389.53229808,
                  377.4382392 , 382.51445418],
                 [390.21491721, 407.90760972, 391.36807296, ..., 382.1347993 ,
                  383.81306147, 366.41006492]])
        • lp
          (chain, draw)
          float64
          -301.0 -307.2 ... -306.8 -301.5
          array([[-300.95481382, -307.18827597, -308.94357562, ..., -307.24068004,
                  -299.47974489, -306.848432  ],
                 [-288.68782192, -302.46946337, -313.96012231, ..., -305.47765428,
                  -306.96534549, -299.15644208],
                 [-292.01283788, -290.82367657, -296.9325567 , ..., -309.11026093,
                  -303.66544734, -307.93238498],
                 [-311.48221322, -321.23575274, -318.54558226, ..., -303.81632684,
                  -306.83830943, -301.48182129]])
        • tree_size
          (chain, draw)
          float64
          15.0 15.0 15.0 ... 15.0 15.0 15.0
          array([[15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.]])
      • created_at :
        2020-06-20T14:25:20.072749
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        34.35768222808838
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • race: 3
        • replay: 138
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • μ
          (chain, draw, race)
          float64
          4.487e+03 3.816e+03 ... 4.079e+03
          array([[[4487.3036091 , 3816.4730759 , 3841.54847432],
                  [3678.10941335, 4259.6222888 , 3309.53839094],
                  [4523.44352926, 3771.63792973, 4095.71172882],
                  ...,
                  [3793.7352304 , 3936.80991215, 3897.05804332],
                  [4287.27113474, 4067.38137671, 3856.85673442],
                  [3792.63645476, 3763.38063103, 4079.25539045]]])
        • σ
          (chain, draw, race)
          float64
          10.45 53.54 169.3 ... 210.5 146.2
          array([[[ 10.45030045,  53.53690568, 169.32540234],
                  [ 23.57617238,  10.93212404,  83.18141646],
                  [125.6331917 ,  94.68059879, 168.58509729],
                  ...,
                  [ 54.01739286, 112.35908554, 107.02562404],
                  [144.26356103,  77.82838645,   9.93539497],
                  [ 81.81960096, 210.54208204, 146.24259794]]])
        • winrate
          (chain, draw, replay)
          float64
          0.4452 0.4443 ... 0.4049 0.3675
          array([[[0.44516586, 0.44432904, 0.49543905, ..., 0.79673329,
                   0.80140205, 0.28212387],
                  [0.7972168 , 0.68737573, 0.21071926, ..., 0.31760374,
                   0.3228919 , 0.08274033],
                  [0.46947403, 0.43159697, 0.78947532, ..., 0.82439068,
                   0.80940984, 0.32718542],
                  ...,
                  [0.74439685, 0.57396175, 0.48594935, ..., 0.37104134,
                   0.37754386, 0.3333573 ],
                  [0.70701564, 0.56655281, 0.54098671, ..., 0.57389202,
                   0.76269576, 0.26823939],
                  [0.59530994, 0.28697282, 0.72372083, ..., 0.36763267,
                   0.40492739, 0.36749525]]])
      • created_at :
        2020-06-20T14:25:20.604059
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • replay: 138
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (chain, draw, replay)
          int64
          1 1 0 0 1 1 1 0 ... 0 0 0 1 1 0 0 0
          array([[[1, 1, 0, ..., 1, 1, 0],
                  [1, 1, 0, ..., 0, 0, 0],
                  [1, 0, 0, ..., 1, 1, 0],
                  ...,
                  [1, 1, 0, ..., 0, 0, 0],
                  [1, 1, 0, ..., 1, 0, 0],
                  [0, 0, 0, ..., 0, 0, 0]]])
      • created_at :
        2020-06-20T14:25:20.605812
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 138
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • win
          (replay)
          float64
          1.0 0.0 0.0 1.0 ... 1.0 1.0 1.0 1.0
          array([1., 0., 0., 1., 1., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0., 0., 1.,
                 1., 0., 0., 0., 1., 0., 0., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0.,
                 0., 0., 1., 0., 1., 1., 1., 1., 1., 1., 1., 0., 1., 0., 1., 0., 1.,
                 0., 1., 0., 1., 1., 1., 1., 0., 0., 1., 0., 0., 1., 0., 0., 0., 1.,
                 1., 1., 0., 1., 1., 0., 0., 1., 1., 1., 1., 0., 1., 0., 1., 1., 0.,
                 0., 1., 0., 1., 0., 1., 1., 0., 1., 0., 0., 0., 0., 1., 0., 0., 0.,
                 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 1., 1.,
                 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1., 0., 1., 1.,
                 1., 1.])
      • created_at :
        2020-06-20T14:25:20.606613
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 138
        • replay
          (replay)
          int64
          8 325 54 346 138 ... 25 208 59 364
          array([  8, 325,  54, 346, 138, 405,  20, 129, 104,  46, 302, 408, 101, 219,
                 316, 126,  98, 231, 241, 385, 193, 198,  90, 329, 137, 200,  80, 355,
                 317,  33,  64, 213, 368,  49, 435, 134, 254, 330,  60,  39, 218, 109,
                 301, 133, 328, 181, 156, 395,  43, 249,  27, 153, 211, 420, 366, 186,
                 163,  63, 202,  45,  69,  31, 167, 177,  95, 151, 392, 387,  18, 286,
                 102, 290, 195, 428, 403,  97, 406, 412, 374, 263, 371,  41, 212,  52,
                 238, 345,   4, 117, 407,  56, 103, 118, 319,  57, 128, 294,  15, 273,
                 327, 281, 378, 121, 113, 284, 422, 389, 216,  58, 418, 309, 123, 116,
                 222, 122,  11, 361, 179, 255, 239, 225, 381, 424, 343, 287, 341, 184,
                 380, 196, 174, 306, 252, 148, 416, 391,  25, 208,  59, 364])
        • enemy_race
          (replay)
          int32
          1 1 2 2 1 1 2 1 ... 2 2 0 2 2 0 0 2
          array([1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 0, 2, 2, 0, 0, 2, 0, 2,
                 2, 1, 1, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 1, 2, 1, 1, 2, 2, 2, 1, 0,
                 0, 1, 0, 2, 2, 2, 1, 0, 2, 1, 0, 2, 1, 0, 1, 1, 2, 2, 2, 2, 1, 2,
                 1, 2, 0, 0, 0, 1, 0, 2, 2, 0, 0, 0, 0, 1, 0, 1, 2, 0, 1, 2, 2, 1,
                 2, 1, 0, 2, 2, 2, 1, 0, 0, 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 2, 0, 2,
                 0, 1, 0, 0, 2, 0, 0, 0, 2, 1, 0, 1, 1, 0, 2, 1, 0, 2, 0, 1, 2, 2,
                 0, 2, 2, 0, 0, 2], dtype=int32)
        • enemy_mmr
          (replay)
          int32
          3748 3946 3802 ... 3977 3937 4240
          array([3748, 3946, 3802, 3816, 3701, 3861, 3907, 4066, 3757, 4350, 3964,
                 3894, 3932, 3952, 3955, 3912, 3744, 3492, 4642, 3756, 3664, 3769,
                 3871, 3631, 3631, 3685, 3626, 3647, 3626, 3736, 3784, 3856, 3866,
                 3847, 3883, 3761, 3686, 3827, 3771, 3752, 3803, 3922, 3888, 3900,
                 3962, 3992, 3798, 3797, 3790, 3966, 3881, 3823, 3904, 3920, 3907,
                 3961, 3874, 3570, 4359, 4009, 3859, 3988, 3885, 4020, 3935, 3908,
                 4596, 4851, 3941, 3808, 3942, 3854, 3956, 3976, 3998, 3953, 4068,
                 3960, 4016, 4055, 3925, 4104, 3989, 4001, 4237, 4161, 4024, 4108,
                 4125, 4028, 4012, 3992, 4144, 4029, 4051, 4131, 4407, 4037, 3965,
                 3944, 4169, 3882, 4018, 4066, 3828, 3957, 4181, 4160, 3886, 3963,
                 3875, 3956, 3976, 3953, 3757, 4007, 3911, 3967, 4935, 3898, 3880,
                 3927, 3948, 3833, 3894, 3782, 3786, 3845, 3863, 3966, 3864, 3843,
                 3840, 4033, 3914, 3977, 3937, 4240], dtype=int32)
      • created_at :
        2020-06-20T14:25:20.607687
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

Looks like that helped!

az.plot_trace(output, var_names=var_names);

We can also plot the posteriors and the Highest Density Intervals, whose value for the threshold of 94% says that our model is 94% sure my PvT average MMR is located between 4045 and 4489:

az.plot_posterior(output, var_names = var_names);

This already shows us two things:

  • there are large differences in average MMR in the three matchups - as we had expected! This basically means I could go to TopTierPractice and use these MMR ranges to find practice partners at appropriate levels for the both of us. Interestingly, this means I should have been seeking better Terran players. (Note that this is last year’s data).
  • The versus Zerg fluctuations are a tad larger than against the other races; this would mean there are more confounding variables. Game duration could be a factor; I feel much more confident in the midgame than in the extreme lategame or against early rushes.

And this is honestly something you could start applying to your own data right now. Now, what I was going to do was to also apply a hierarchical model to this data; but, since it turns out I don’t really understand them all that well just yet, and I’m running out of time for my pre-set deadling for this post, I’ll postpone that for the next week.

Instead, what we’ll do is take a look at the current (this year’s) data, using this exact same technique for a cheap replica of time dependence:

Analysis repeated for 2020 (easy code snippet!)

data = all_data[(all_data['time_played_at'] > '2020-01-01')]
display(data)
time_played_at win race enemy_race mmr mmr_diff enemy_nickname map_name duration enemy_mmr expected_winrate
265 2020-01-04 19:04:15+00:00 True Protoss Terran 4009 -29 Rêgo Nightshade LE 935 4038 0.481039
223 2020-01-04 19:07:07+00:00 True Protoss Protoss 4031 -132 &lt;unƊeaƊ&gt;<sp/>òMégà World of Sleepers LE 107 4163 0.414501
402 2020-01-04 19:19:31+00:00 False Protoss Terran 4057 -32 Tsumi Eternal Empire LE 714 4089 0.479080
206 2020-01-05 14:03:19+00:00 False Protoss Zerg 4036 -160 &lt;Lowko&gt;<sp/>HardNeper Eternal Empire LE 300 4196 0.396839
417 2020-01-05 14:18:07+00:00 True Protoss Terran 4019 14 delmak Eternal Empire LE 867 4005 0.509157
... ... ... ... ... ... ... ... ... ... ... ...
1 2020-06-09 17:11:15+00:00 False Protoss Zerg 4186 39 djakette Eternal Empire LE 420 4147 0.525489
210 2020-06-09 17:24:17+00:00 False Protoss Terran 4164 -68 StaMinA Eternal Empire LE 758 4232 0.455635
188 2020-06-10 11:18:56+00:00 False Protoss Protoss 4144 -41 Guinness Ice and Chrome LE 299 4185 0.473206
131 2020-06-10 11:27:56+00:00 False Protoss Terran 4125 125 Oink Eternal Empire LE 211 4000 0.581047
144 2020-06-10 11:35:16+00:00 False Protoss Protoss 4100 -88 &lt;UATeam&gt;<sp/>click Submarine LE 343 4188 0.442688

202 rows × 11 columns

brush = altair.selection(type='interval')
scatter = altair.Chart(data).mark_circle().encode(
    altair.X('enemy_mmr',
             scale=altair.Scale(zero=False)),
    altair.Y('mmr',
             scale=altair.Scale(zero=False)),
    facet='enemy_race',
    size='expected_winrate',
    color='win',
    tooltip='enemy_nickname',
).add_selection(brush)

bar = altair.Chart(data).mark_bar().encode(
    x=altair.X('mean(win):Q', scale=altair.Scale(domain=(0, 1))),
    y='enemy_race:O',
).transform_filter(brush)

scatter & bar
import pymc3 as pm
import arviz as az

coords = {
    "replay": data.index,
    "race": ["Terran", "Protoss", "Zerg"],
}
race_encoding ={"Terran": 0,
                "Protoss": 1,
                "Zerg": 2} 


predictive_var_names = "win μ σ winrate".split()
with pm.Model(coords=coords) as split_model:
    mmr_μ_matchup = pm.Normal('μ', 4000, 300, dims='race')
    mmr_σ_matchup = pm.HalfNormal('σ', 100, dims='race')
    mmr_σ_norm = pm.Normal('helper', 0, 1, dims='replay')
    
    enemy_races = pm.Data("enemy_race", data.enemy_race.map(race_encoding).astype(int), dims='replay')
    mmr = pm.Deterministic('MMR', mmr_μ_matchup[enemy_races] + mmr_σ_matchup[enemy_races] * mmr_σ_norm, dims='replay')
    
    enemy_mmr = pm.Data("enemy_mmr", data.enemy_mmr, dims='replay')
    diffs = pm.Deterministic('MMR_diff', mmr - enemy_mmr, dims = 'replay')
    p = pm.Deterministic('winrate', MMR_winrate(diffs), dims = 'replay')
    wl = pm.Bernoulli('win', p=p, observed=data.win, dims = 'replay')
    
    trace = pm.sample(2000, tune=2000, chains=4, random_seed=1, target_accept=0.9)
    output = az.from_pymc3(trace=trace,
                           prior=pm.sample_prior_predictive(2000 , var_names=predictive_var_names, random_seed=1),
                           posterior_predictive=pm.sample_posterior_predictive(trace, var_names=predictive_var_names, random_seed=1),
                          )
output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 2 jobs)
NUTS: [helper, σ, μ]
100.00% [16000/16000 00:25<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 2_000 tune and 2_000 draw iterations (8_000 + 8_000 draws total) took 26 seconds.
100.00% [8000/8000 00:08<00:00]
arviz.InferenceData
    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 202
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • μ
          (chain, draw, race)
          float64
          4.211e+03 4.108e+03 ... 3.992e+03
          array([[[4210.85745791, 4108.13402572, 4047.68655821],
                  [4187.82039211, 4167.02974265, 3832.39048778],
                  [4385.10730355, 4051.15698963, 3888.3543684 ],
                  ...,
                  [4268.67850837, 4004.06007755, 3935.24654733],
                  [4182.61327252, 3852.96115761, 4013.25955458],
                  [4058.95730755, 3860.61071343, 4048.4206048 ]],
          
                 [[4331.22003251, 3887.80946609, 3896.23173387],
                  [4106.02686452, 4063.88927972, 3995.75729977],
                  [4196.19055581, 3907.28257413, 3817.30936413],
                  ...,
                  [4158.82110597, 3994.77797297, 3948.94402472],
                  [4130.32958212, 4024.45281323, 3864.17620077],
                  [4255.71656811, 4121.39660228, 4067.50723152]],
          
                 [[4264.33592228, 4119.64071496, 3900.73678858],
                  [4290.27572226, 4138.58898858, 3923.24665912],
                  [4057.54009725, 3929.51218737, 3995.78802404],
                  ...,
                  [4271.91923915, 4208.66941361, 3925.91501886],
                  [4170.24764659, 4004.86306088, 3916.82405953],
                  [4146.33857085, 4069.27579897, 3925.21194574]],
          
                 [[4391.8074459 , 3973.03474104, 4062.09104669],
                  [3980.12121482, 4056.28919035, 3860.08003276],
                  [4365.43547727, 4060.16002941, 3927.51863056],
                  ...,
                  [4344.05048768, 3950.01257309, 3857.26550133],
                  [3986.12083546, 4073.15663108, 4093.19655361],
                  [4133.45346107, 4052.34439539, 3991.74262184]]])
        • helper
          (chain, draw, replay)
          float64
          0.8451 -0.2949 ... -0.3081 0.4416
          array([[[ 0.84509895, -0.29485376,  0.8011897 , ...,  1.33714031,
                   -1.80845999, -0.51358847],
                  [-1.40481271,  1.07728824, -1.1490509 , ..., -0.41919933,
                    1.34160767, -0.04753472],
                  [-1.44831415, -0.00634847, -0.67124799, ..., -1.08190966,
                   -0.64604433, -0.69881696],
                  ...,
                  [-1.01416874,  1.77692415, -0.0175506 , ...,  0.02982226,
                   -0.79090697, -0.75716479],
                  [ 0.99411964, -0.39523617,  0.46654021, ..., -1.62395586,
                   -0.63782079,  1.43213844],
                  [ 1.77132541, -0.95056043,  0.37540258, ...,  0.01968714,
                   -1.03527548,  0.39205272]],
          
                 [[-0.10334535, -0.8929405 ,  0.73607739, ..., -1.19666118,
                    0.06852772, -0.96987602],
                  [ 2.13759694,  0.84869979, -0.99459824, ...,  0.65078661,
                   -0.49690394,  0.77831748],
                  [-1.44472736, -1.21900212, -0.77229333, ..., -0.45423455,
                    0.19830191, -0.68767208],
                  ...,
                  [ 0.19454783, -0.71190753,  2.82909697, ...,  0.97857095,
                    0.67187882,  0.09746846],
                  [-0.58904084, -0.41505728,  1.04412233, ..., -0.12198221,
                   -0.50684467,  1.56542232],
                  [-0.89195114,  1.23244903, -2.10987152, ...,  0.91622949,
                    0.40999001, -0.65424188]],
          
                 [[ 0.95626333,  0.21940413,  0.86589926, ...,  1.47272558,
                   -0.55443001,  1.2008141 ],
                  [ 0.94032427,  0.0931288 ,  0.77226228, ...,  1.26916956,
                   -0.57662136,  0.88842902],
                  [-0.23138386,  0.15845085, -1.33668801, ..., -1.33332178,
                    0.15524309, -1.08860061],
                  ...,
                  [ 1.26120065, -0.15534739,  0.34744789, ..., -1.53003928,
                   -0.07152691, -1.72074586],
                  [-1.15880002,  0.73396249, -0.10402144, ...,  1.01286394,
                   -0.78903161,  2.12732981],
                  [-0.12447582, -0.07029113, -0.5904053 , ...,  0.45058805,
                    0.23860171,  1.39694982]],
          
                 [[ 1.37288017,  1.57454868, -1.31150848, ..., -0.11459006,
                    1.57652361,  0.32320881],
                  [-1.15566697, -0.90959159,  1.06482753, ..., -0.56897759,
                   -1.87990178, -0.52078417],
                  [-0.1134551 , -0.66397135, -0.29449925, ...,  1.63000314,
                    0.50064175, -0.64631669],
                  ...,
                  [ 0.57673475,  1.49125537,  0.97739831, ..., -0.26974367,
                   -1.55536186, -0.15896637],
                  [-0.18430432,  0.11944914, -0.56572547, ..., -0.51577881,
                   -0.14535604, -1.09840927],
                  [ 0.76741937,  1.39186527,  1.48469105, ...,  0.19037821,
                   -0.30807854,  0.44160543]]])
        • σ
          (chain, draw, race)
          float64
          27.23 6.505 39.42 ... 47.14 64.05
          array([[[ 27.22582328,   6.50453839,  39.42478265],
                  [ 13.37751425,   8.46802428, 129.89610941],
                  [ 10.72164228,  24.94971223, 102.7146095 ],
                  ...,
                  [107.26940159,  23.20508653,  35.3446602 ],
                  [124.97180552,  13.19227419, 145.18684899],
                  [ 88.2747096 ,  40.61048868,  50.21903074]],
          
                 [[131.31729221,  96.5412831 ,  70.56487648],
                  [143.55608877,  36.54926803,   5.84418576],
                  [ 33.35705402, 205.64975605,  10.01984894],
                  ...,
                  [ 70.90358774,  23.20074938, 104.54547733],
                  [ 74.54938645,  48.98896964, 131.8366626 ],
                  [ 28.87932693, 103.09557275,  45.74619814]],
          
                 [[ 98.66459786, 213.93501451,  77.75342308],
                  [ 46.20775227, 140.47053288,  87.54119877],
                  [ 48.65507021, 182.63370476,  35.63529879],
                  ...,
                  [  4.05083801, 116.69219995, 127.42758537],
                  [ 28.45085473,  79.66533597, 140.58625841],
                  [148.66125575, 154.45834609, 239.20924515]],
          
                 [[ 22.20125272,  74.76545816,  94.2220565 ],
                  [ 63.23463911,  29.49654959,  78.6400277 ],
                  [ 94.44434706,  67.93754801, 187.33159977],
                  ...,
                  [ 94.74513333,  55.86780229, 124.72461746],
                  [ 14.08098885,  94.3565778 , 120.11072466],
                  [ 18.22473629,  47.14089139,  64.04793555]]])
        • MMR
          (chain, draw, replay)
          float64
          4.234e+03 4.106e+03 ... 4.073e+03
          array([[[4233.86597263, 4106.21613813, 4232.67050709, ...,
                   4116.83150619, 4161.62064575, 4104.79336979],
                  [4169.02748999, 4176.15224566, 4172.44894728, ...,
                   4163.47995259, 4205.76776789, 4166.62721748],
                  [4369.57899735, 4050.99859722, 4377.91042278, ...,
                   4024.16365495, 4378.18064731, 4033.72170767],
                  ...,
                  [4159.88923469, 4045.29375632, 4266.79586648, ...,
                   4004.75210576, 4183.8383908 , 3986.49000311],
                  [4306.85019842, 3847.74709363, 4240.91764535, ...,
                   3831.53748658, 4102.90365662, 3871.85432064],
                  [4215.32054396, 3822.00798974, 4092.09586122, ...,
                   3861.41021769, 3967.5686653 , 3876.53216602]],
          
                 [[4317.64900043, 3801.60384413, 4427.87972211, ...,
                   3772.28226007, 4340.21890649, 3794.17639083],
                  [4412.89192094, 4094.90863597, 3963.24623187, ...,
                   4087.6750538 , 4034.6932786 , 4092.33621384],
                  [4147.99870736, 3656.59508486, 4170.42912556, ...,
                   3813.86934982, 4202.80532332, 3765.86297953],
                  ...,
                  [4172.61524529, 3978.2611847 , 4359.41423107, ...,
                   4017.48155239, 4206.45972478, 3997.0393142 ],
                  [4086.41694857, 4004.11958463, 4208.1682613 , ...,
                   4018.47703031, 4092.54462294, 4101.14123968],
                  [4229.95761948, 4248.45664107, 4194.78489881, ...,
                   4215.85580654, 4267.5568035 , 4053.94716107]],
          
                 [[4358.6852591 , 4166.57894108, 4349.76952448, ...,
                   4434.70828399, 4209.63330835, 4376.53689592],
                  [4333.72599335, 4151.67084096, 4325.96022654, ...,
                   4316.86991295, 4263.63134537, 4263.38708701],
                  [4046.28209913, 3958.4506536 , 3992.50344832, ...,
                   3686.00269018, 4065.09346086, 3730.69702582],
                  ...,
                  [4277.0281587 , 4190.54158446, 4273.32669429, ...,
                   4030.12576439, 4271.62949522, 4007.87179371],
                  [4137.27879557, 4063.33442943, 4167.28814765, ...,
                   4085.55320713, 4147.79902283, 4174.33750488],
                  [4127.8338395 , 4058.4187474 , 4058.56817809, ...,
                   4138.87288461, 4181.8094006 , 4285.04635831]],
          
                 [[4422.28710553, 4090.75659466, 4362.69031474, ...,
                   3964.46736236, 4426.80824501, 3997.1995961 ],
                  [3907.04303111, 4029.45937695, 4047.45519966, ...,
                   4039.50631474, 3861.24630434, 4040.92785429],
                  [4354.72028456, 4015.05144374, 4337.62168777, ...,
                   4170.8984463 , 4412.71826075, 4016.25085813],
                  ...,
                  [4398.69329839, 4033.32573322, 4436.65422109, ...,
                   3934.9425872 , 4196.68752121, 3941.13147145],
                  [3983.52564834, 4084.42744336, 3978.15486147, ...,
                   4024.48950801, 3984.07407872, 3969.51449166],
                  [4147.43947677, 4117.95816506, 4160.51156385, ...,
                   4061.31899411, 4127.83881087, 4073.1620688 ]]])
        • MMR_diff
          (chain, draw, replay)
          float64
          195.9 -56.78 143.7 ... 127.8 -114.8
          array([[[ 195.86597263,  -56.78386187,  143.67050709, ...,
                    -68.16849381,  161.62064575,  -83.20663021],
                  [ 131.02748999,   13.15224566,   83.44894728, ...,
                    -21.52004741,  205.76776789,  -21.37278252],
                  [ 331.57899735, -112.00140278,  288.91042278, ...,
                   -160.83634505,  378.18064731, -154.27829233],
                  ...,
                  [ 121.88923469, -117.70624368,  177.79586648, ...,
                   -180.24789424,  183.8383908 , -201.50999689],
                  [ 268.85019842, -315.25290637,  151.91764535, ...,
                   -353.46251342,  102.90365662, -316.14567936],
                  [ 177.32054396, -340.99201026,    3.09586122, ...,
                   -323.58978231,  -32.4313347 , -311.46783398]],
          
                 [[ 279.64900043, -361.39615587,  338.87972211, ...,
                   -412.71773993,  340.21890649, -393.82360917],
                  [ 374.89192094,  -68.09136403, -125.75376813, ...,
                    -97.3249462 ,   34.6932786 ,  -95.66378616],
                  [ 109.99870736, -506.40491514,   81.42912556, ...,
                   -371.13065018,  202.80532332, -422.13702047],
                  ...,
                  [ 134.61524529, -184.7388153 ,  270.41423107, ...,
                   -167.51844761,  206.45972478, -190.9606858 ],
                  [  48.41694857, -158.88041537,  119.1682613 , ...,
                   -166.52296969,   92.54462294,  -86.85876032],
                  [ 191.95761948,   85.45664107,  105.78489881, ...,
                     30.85580654,  267.5568035 , -134.05283893]],
          
                 [[ 320.6852591 ,    3.57894108,  260.76952448, ...,
                    249.70828399,  209.63330835,  188.53689592],
                  [ 295.72599335,  -11.32915904,  236.96022654, ...,
                    131.86991295,  263.63134537,   75.38708701],
                  [   8.28209913, -204.5493464 ,  -96.49655168, ...,
                   -498.99730982,   65.09346086, -457.30297418],
                  ...,
                  [ 239.0281587 ,   27.54158446,  184.32669429, ...,
                   -154.87423561,  271.62949522, -180.12820629],
                  [  99.27879557,  -99.66557057,   78.28814765, ...,
                    -99.44679287,  147.79902283,  -13.66249512],
                  [  89.8338395 , -104.5812526 ,  -30.43182191, ...,
                    -46.12711539,  181.8094006 ,   97.04635831]],
          
                 [[ 384.28710553,  -72.24340534,  273.69031474, ...,
                   -220.53263764,  426.80824501, -190.8004039 ],
                  [-130.95696889, -133.54062305,  -41.54480034, ...,
                   -145.49368526, -138.75369566, -147.07214571],
                  [ 316.72028456, -147.94855626,  248.62168777, ...,
                    -14.1015537 ,  412.71826075, -171.74914187],
                  ...,
                  [ 360.69329839, -129.67426678,  347.65422109, ...,
                   -250.0574128 ,  196.68752121, -246.86852855],
                  [ -54.47435166,  -78.57255664, -110.84513853, ...,
                   -160.51049199,  -15.92592128, -218.48550834],
                  [ 109.43947677,  -45.04183494,   71.51156385, ...,
                   -123.68100589,  127.83881087, -114.8379312 ]]])
        • winrate
          (chain, draw, replay)
          float64
          0.6254 0.4629 ... 0.5829 0.4254
          array([[[0.62539184, 0.46292339, 0.59288977, ..., 0.45552587,
                   0.60417516, 0.44578491],
                  [0.58488098, 0.50860261, 0.55437173, ..., 0.48592652,
                   0.63144167, 0.48602278],
                  [0.70424627, 0.4272549 , 0.68047498, ..., 0.39631572,
                   0.72899659, 0.40042837],
                  ...,
                  [0.579064  , 0.42360614, 0.61425083, ..., 0.38423006,
                   0.6179903 , 0.37115482],
                  [0.66895588, 0.30472821, 0.59808776, ..., 0.28396851,
                   0.56691001, 0.30423351],
                  [0.6139561 , 0.29064968, 0.50202513, ..., 0.30012628,
                   0.47879797, 0.3068306 ]],
          
                 [[0.6751831 , 0.27976657, 0.7082095 , ..., 0.25352371,
                   0.70893308, 0.26299327],
                  [0.72729319, 0.45557593, 0.41847324, ..., 0.43667736,
                   0.52267881, 0.43774686],
                  [0.57146229, 0.20998001, 0.55306573, ..., 0.27466314,
                   0.6296359 , 0.24888782],
                  ...,
                  [0.58715842, 0.38145365, 0.66986153, ..., 0.3921403 ,
                   0.63186293, 0.37761992],
                  [0.53162934, 0.3975408 , 0.57732763, ..., 0.39276136,
                   0.56024338, 0.44342522],
                  [0.62299295, 0.55566915, 0.56876006, ..., 0.52017317,
                   0.66820599, 0.41319834]],
          
                 [[0.69827494, 0.50234112, 0.66425691, ..., 0.65777178,
                   0.6337924 , 0.6208884 ],
                  [0.68433995, 0.49258965, 0.650224  , ..., 0.58541607,
                   0.66592486, 0.54915469],
                  [0.50541747, 0.36930058, 0.43721063, ..., 0.21321342,
                   0.54247782, 0.23208648],
                  ...,
                  [0.65145361, 0.51800836, 0.61829188, ..., 0.40005405,
                   0.67056436, 0.38430415],
                  [0.56457983, 0.4351714 , 0.55103335, ..., 0.43531211,
                   0.59549456, 0.49106372],
                  [0.55849514, 0.43201257, 0.48010373, ..., 0.46986282,
                   0.61673617, 0.56314332]],
          
                 [[0.73214164, 0.45288266, 0.67175446, ..., 0.35961398,
                   0.75339009, 0.3777185 ],
                  [0.41516382, 0.41352334, 0.47285047, ..., 0.40595928,
                   0.4102192 , 0.40496366],
                  [0.69608465, 0.40441119, 0.65713147, ..., 0.49077661,
                   0.74647655, 0.38950478],
                  ...,
                  [0.71986271, 0.41597896, 0.71293119, ..., 0.34202261,
                   0.62589531, 0.34390283],
                  [0.46442617, 0.44878255, 0.42799542, ..., 0.39651972,
                   0.48958367, 0.36084846],
                  [0.57110391, 0.47057023, 0.54664281, ..., 0.41979366,
                   0.58285382, 0.42543967]]])
      • created_at :
        2020-06-20T14:41:39.607220
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        25.67070198059082
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • race: 3
        • replay: 202
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • win
          (chain, draw, replay)
          int64
          1 1 1 0 1 1 1 1 ... 0 0 0 0 1 0 1 0
          array([[[1, 1, 1, ..., 1, 0, 1],
                  [0, 0, 1, ..., 1, 1, 1],
                  [1, 1, 1, ..., 0, 1, 1],
                  ...,
                  [1, 0, 1, ..., 0, 0, 0],
                  [1, 0, 0, ..., 1, 0, 0],
                  [1, 0, 0, ..., 1, 0, 0]],
          
                 [[0, 1, 0, ..., 0, 0, 0],
                  [1, 0, 0, ..., 0, 0, 0],
                  [0, 0, 0, ..., 0, 1, 0],
                  ...,
                  [1, 1, 0, ..., 1, 1, 1],
                  [1, 0, 1, ..., 0, 1, 0],
                  [1, 1, 1, ..., 1, 1, 1]],
          
                 [[1, 0, 1, ..., 1, 1, 0],
                  [0, 0, 1, ..., 0, 1, 1],
                  [1, 0, 1, ..., 0, 1, 0],
                  ...,
                  [0, 1, 1, ..., 1, 0, 1],
                  [1, 0, 1, ..., 0, 0, 1],
                  [0, 0, 1, ..., 1, 1, 0]],
          
                 [[1, 1, 0, ..., 0, 1, 0],
                  [0, 0, 0, ..., 0, 1, 0],
                  [1, 1, 1, ..., 1, 1, 0],
                  ...,
                  [1, 0, 1, ..., 0, 1, 0],
                  [0, 0, 0, ..., 1, 1, 1],
                  [1, 1, 1, ..., 0, 1, 0]]])
        • μ
          (chain, draw, race)
          float64
          4.211e+03 4.108e+03 ... 3.992e+03
          array([[[4210.85745791, 4108.13402572, 4047.68655821],
                  [4187.82039211, 4167.02974265, 3832.39048778],
                  [4385.10730355, 4051.15698963, 3888.3543684 ],
                  ...,
                  [4268.67850837, 4004.06007755, 3935.24654733],
                  [4182.61327252, 3852.96115761, 4013.25955458],
                  [4058.95730755, 3860.61071343, 4048.4206048 ]],
          
                 [[4331.22003251, 3887.80946609, 3896.23173387],
                  [4106.02686452, 4063.88927972, 3995.75729977],
                  [4196.19055581, 3907.28257413, 3817.30936413],
                  ...,
                  [4158.82110597, 3994.77797297, 3948.94402472],
                  [4130.32958212, 4024.45281323, 3864.17620077],
                  [4255.71656811, 4121.39660228, 4067.50723152]],
          
                 [[4264.33592228, 4119.64071496, 3900.73678858],
                  [4290.27572226, 4138.58898858, 3923.24665912],
                  [4057.54009725, 3929.51218737, 3995.78802404],
                  ...,
                  [4271.91923915, 4208.66941361, 3925.91501886],
                  [4170.24764659, 4004.86306088, 3916.82405953],
                  [4146.33857085, 4069.27579897, 3925.21194574]],
          
                 [[4391.8074459 , 3973.03474104, 4062.09104669],
                  [3980.12121482, 4056.28919035, 3860.08003276],
                  [4365.43547727, 4060.16002941, 3927.51863056],
                  ...,
                  [4344.05048768, 3950.01257309, 3857.26550133],
                  [3986.12083546, 4073.15663108, 4093.19655361],
                  [4133.45346107, 4052.34439539, 3991.74262184]]])
        • σ
          (chain, draw, race)
          float64
          27.23 6.505 39.42 ... 47.14 64.05
          array([[[ 27.22582328,   6.50453839,  39.42478265],
                  [ 13.37751425,   8.46802428, 129.89610941],
                  [ 10.72164228,  24.94971223, 102.7146095 ],
                  ...,
                  [107.26940159,  23.20508653,  35.3446602 ],
                  [124.97180552,  13.19227419, 145.18684899],
                  [ 88.2747096 ,  40.61048868,  50.21903074]],
          
                 [[131.31729221,  96.5412831 ,  70.56487648],
                  [143.55608877,  36.54926803,   5.84418576],
                  [ 33.35705402, 205.64975605,  10.01984894],
                  ...,
                  [ 70.90358774,  23.20074938, 104.54547733],
                  [ 74.54938645,  48.98896964, 131.8366626 ],
                  [ 28.87932693, 103.09557275,  45.74619814]],
          
                 [[ 98.66459786, 213.93501451,  77.75342308],
                  [ 46.20775227, 140.47053288,  87.54119877],
                  [ 48.65507021, 182.63370476,  35.63529879],
                  ...,
                  [  4.05083801, 116.69219995, 127.42758537],
                  [ 28.45085473,  79.66533597, 140.58625841],
                  [148.66125575, 154.45834609, 239.20924515]],
          
                 [[ 22.20125272,  74.76545816,  94.2220565 ],
                  [ 63.23463911,  29.49654959,  78.6400277 ],
                  [ 94.44434706,  67.93754801, 187.33159977],
                  ...,
                  [ 94.74513333,  55.86780229, 124.72461746],
                  [ 14.08098885,  94.3565778 , 120.11072466],
                  [ 18.22473629,  47.14089139,  64.04793555]]])
        • winrate
          (chain, draw, replay)
          float64
          0.6254 0.4629 ... 0.5829 0.4254
          array([[[0.62539184, 0.46292339, 0.59288977, ..., 0.45552587,
                   0.60417516, 0.44578491],
                  [0.58488098, 0.50860261, 0.55437173, ..., 0.48592652,
                   0.63144167, 0.48602278],
                  [0.70424627, 0.4272549 , 0.68047498, ..., 0.39631572,
                   0.72899659, 0.40042837],
                  ...,
                  [0.579064  , 0.42360614, 0.61425083, ..., 0.38423006,
                   0.6179903 , 0.37115482],
                  [0.66895588, 0.30472821, 0.59808776, ..., 0.28396851,
                   0.56691001, 0.30423351],
                  [0.6139561 , 0.29064968, 0.50202513, ..., 0.30012628,
                   0.47879797, 0.3068306 ]],
          
                 [[0.6751831 , 0.27976657, 0.7082095 , ..., 0.25352371,
                   0.70893308, 0.26299327],
                  [0.72729319, 0.45557593, 0.41847324, ..., 0.43667736,
                   0.52267881, 0.43774686],
                  [0.57146229, 0.20998001, 0.55306573, ..., 0.27466314,
                   0.6296359 , 0.24888782],
                  ...,
                  [0.58715842, 0.38145365, 0.66986153, ..., 0.3921403 ,
                   0.63186293, 0.37761992],
                  [0.53162934, 0.3975408 , 0.57732763, ..., 0.39276136,
                   0.56024338, 0.44342522],
                  [0.62299295, 0.55566915, 0.56876006, ..., 0.52017317,
                   0.66820599, 0.41319834]],
          
                 [[0.69827494, 0.50234112, 0.66425691, ..., 0.65777178,
                   0.6337924 , 0.6208884 ],
                  [0.68433995, 0.49258965, 0.650224  , ..., 0.58541607,
                   0.66592486, 0.54915469],
                  [0.50541747, 0.36930058, 0.43721063, ..., 0.21321342,
                   0.54247782, 0.23208648],
                  ...,
                  [0.65145361, 0.51800836, 0.61829188, ..., 0.40005405,
                   0.67056436, 0.38430415],
                  [0.56457983, 0.4351714 , 0.55103335, ..., 0.43531211,
                   0.59549456, 0.49106372],
                  [0.55849514, 0.43201257, 0.48010373, ..., 0.46986282,
                   0.61673617, 0.56314332]],
          
                 [[0.73214164, 0.45288266, 0.67175446, ..., 0.35961398,
                   0.75339009, 0.3777185 ],
                  [0.41516382, 0.41352334, 0.47285047, ..., 0.40595928,
                   0.4102192 , 0.40496366],
                  [0.69608465, 0.40441119, 0.65713147, ..., 0.49077661,
                   0.74647655, 0.38950478],
                  ...,
                  [0.71986271, 0.41597896, 0.71293119, ..., 0.34202261,
                   0.62589531, 0.34390283],
                  [0.46442617, 0.44878255, 0.42799542, ..., 0.39651972,
                   0.48958367, 0.36084846],
                  [0.57110391, 0.47057023, 0.54664281, ..., 0.41979366,
                   0.58285382, 0.42543967]]])
      • created_at :
        2020-06-20T14:41:40.227565
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • replay: 202
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • win
          (chain, draw, replay)
          float64
          -0.4694 -0.7702 ... -0.8743 -0.5542
          array([[[-0.46937689, -0.7701937 , -0.89867129, ..., -0.60793486,
                   -0.92678349, -0.59020241],
                  [-0.5363469 , -0.6760883 , -0.80827016, ..., -0.66538907,
                   -0.99815629, -0.66557633],
                  [-0.35062718, -0.85037448, -1.14091971, ..., -0.50470393,
                   -1.30562387, -0.51153982],
                  ...,
                  [-0.54634227, -0.85895116, -0.95256795, ..., -0.48488185,
                   -0.96230927, -0.46387019],
                  [-0.40203718, -1.188335  , -0.91152153, ..., -0.33403113,
                   -0.83680974, -0.36274118],
                  [-0.48783186, -1.23563659, -0.69720566, ..., -0.35685536,
                   -0.65161755, -0.36648086]],
          
                 [[-0.39277136, -1.27379969, -1.23171919, ..., -0.29239143,
                   -1.23420208, -0.30515825],
                  [-0.31842559, -0.78619288, -0.54209829, ..., -0.57390274,
                   -0.73956566, -0.57580311],
                  [-0.55955678, -1.56074295, -0.80534375, ..., -0.32111909,
                   -0.9932687 , -0.28620026],
                  ...,
                  [-0.53246061, -0.96376593, -1.1082431 , ..., -0.49781118,
                   -0.99929993, -0.47420432],
                  [-0.63180876, -0.9224577 , -0.86115793, ..., -0.49883342,
                   -0.82153384, -0.58595374],
                  [-0.47322008, -0.58758221, -0.84109064, ..., -0.73433001,
                   -1.10324095, -0.5330684 ]],
          
                 [[-0.35914236, -0.68847586, -1.09140904, ..., -1.07227745,
                   -1.00455489, -0.96992466],
                  [-0.37930049, -0.70807881, -1.05046232, ..., -0.88047984,
                   -1.09638935, -0.796631  ],
                  [-0.68237052, -0.99614438, -0.57484984, ..., -0.23979825,
                   -0.78192993, -0.26407816],
                  ...,
                  [-0.42854909, -0.65776391, -0.96309906, ..., -0.51091572,
                   -1.11037426, -0.48500219],
                  [-0.57167349, -0.8320153 , -0.80080667, ..., -0.57148211,
                   -0.9050901 , -0.67543246],
                  [-0.58250936, -0.83930058, -0.65412597, ..., -0.63461948,
                   -0.95903169, -0.8281501 ]],
          
                 [[-0.31178129, -0.79212221, -1.11399335, ..., -0.44568413,
                   -1.39994749, -0.47436271],
                  [-0.8790821 , -0.88304132, -0.64027103, ..., -0.52080742,
                   -0.52800433, -0.5191328 ],
                  [-0.36228401, -0.90532311, -1.07040821, ..., -0.67486847,
                   -1.37229894, -0.49348481],
                  ...,
                  [-0.32869477, -0.87712059, -1.24803335, ..., -0.41858471,
                   -0.9832196 , -0.42144637],
                  [-0.76695269, -0.80121681, -0.55860828, ..., -0.50504192,
                   -0.67252855, -0.4476137 ],
                  [-0.56018411, -0.75381006, -0.79107498, ..., -0.54437148,
                   -0.87431857, -0.55415018]]])
      • created_at :
        2020-06-20T14:41:40.224319
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 4
        • draw: 2000
        • chain
          (chain)
          int64
          0 1 2 3
          array([0, 1, 2, 3])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • step_size_bar
          (chain, draw)
          float64
          0.2948 0.2948 ... 0.2904 0.2904
          array([[0.29475372, 0.29475372, 0.29475372, ..., 0.29475372, 0.29475372,
                  0.29475372],
                 [0.29770566, 0.29770566, 0.29770566, ..., 0.29770566, 0.29770566,
                  0.29770566],
                 [0.27693519, 0.27693519, 0.27693519, ..., 0.27693519, 0.27693519,
                  0.27693519],
                 [0.29040166, 0.29040166, 0.29040166, ..., 0.29040166, 0.29040166,
                  0.29040166]])
        • energy_error
          (chain, draw)
          float64
          -0.2597 0.03461 ... 0.2249 0.4218
          array([[-0.25966   ,  0.03460919,  0.01227495, ..., -0.51621275,
                   0.86212363, -0.24459744],
                 [-0.22234907,  0.28075065, -0.17805517, ...,  0.24543193,
                  -0.28516645,  0.2238124 ],
                 [-1.07546919,  0.10968526,  0.01985628, ..., -0.48126788,
                  -0.01111381, -0.44255399],
                 [ 0.0773235 ,  0.06891559, -0.09303872, ...,  0.02184957,
                   0.2248607 ,  0.42175383]])
        • step_size
          (chain, draw)
          float64
          0.3427 0.3427 ... 0.3262 0.3262
          array([[0.34270119, 0.34270119, 0.34270119, ..., 0.34270119, 0.34270119,
                  0.34270119],
                 [0.24183475, 0.24183475, 0.24183475, ..., 0.24183475, 0.24183475,
                  0.24183475],
                 [0.30871193, 0.30871193, 0.30871193, ..., 0.30871193, 0.30871193,
                  0.30871193],
                 [0.32619857, 0.32619857, 0.32619857, ..., 0.32619857, 0.32619857,
                  0.32619857]])
        • max_energy_error
          (chain, draw)
          float64
          0.6081 0.6931 ... 0.2691 0.7324
          array([[ 0.60811894,  0.6931234 , -0.45286992, ...,  0.95980239,
                   1.16150203, -0.51598675],
                 [-0.23944338,  0.28075065,  1.04635515, ...,  0.38439969,
                  -0.57428163,  0.29192163],
                 [-1.07546919,  0.9341971 ,  0.44889643, ..., -0.62753125,
                   0.34544639, -0.49631647],
                 [ 0.14807623,  0.52570743, -0.12783034, ...,  0.52722686,
                   0.2690612 ,  0.73236215]])
        • diverging
          (chain, draw)
          bool
          False False False ... False False
          array([[False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False],
                 [False, False, False, ..., False, False, False]])
        • depth
          (chain, draw)
          int64
          4 4 4 4 4 4 4 4 ... 4 4 4 4 4 4 4 4
          array([[4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4],
                 [4, 4, 4, ..., 4, 4, 4]])
        • mean_tree_accept
          (chain, draw)
          float64
          0.9568 0.9454 ... 0.8909 0.8291
          array([[0.95677878, 0.94541275, 0.98043667, ..., 0.95633415, 0.76809655,
                  0.99642304],
                 [0.99644285, 0.94807192, 0.90218025, ..., 0.82851872, 0.96650925,
                  0.92233715],
                 [1.        , 0.71300232, 0.88258827, ..., 1.        , 0.93890528,
                  1.        ],
                 [0.94858298, 0.788294  , 0.98735475, ..., 0.78198705, 0.89093101,
                  0.8291273 ]])
        • energy
          (chain, draw)
          float64
          571.0 550.5 551.2 ... 535.7 552.8
          array([[570.97160285, 550.45584786, 551.24512846, ..., 556.01462471,
                  539.20361935, 542.4138038 ],
                 [527.22012699, 525.94887852, 554.05126794, ..., 577.34190697,
                  566.73680041, 554.7874333 ],
                 [551.2205363 , 538.40491567, 540.25295614, ..., 567.3886664 ,
                  554.96612302, 527.45559388],
                 [539.74878505, 563.86859884, 548.89266634, ..., 549.10831899,
                  535.70152588, 552.7940487 ]])
        • lp
          (chain, draw)
          float64
          -454.4 -444.6 ... -441.8 -450.3
          array([[-454.37819213, -444.56013535, -452.36990853, ..., -440.74435605,
                  -445.0448313 , -439.64688243],
                 [-429.31151241, -445.44878934, -454.31044625, ..., -462.85580719,
                  -447.20869749, -457.61499909],
                 [-427.08968302, -433.51041027, -430.05582152, ..., -448.69884569,
                  -444.46669223, -426.50110975],
                 [-441.96784552, -446.14529167, -443.64588735, ..., -436.04827228,
                  -441.77413958, -450.32373305]])
        • tree_size
          (chain, draw)
          float64
          15.0 15.0 15.0 ... 15.0 15.0 15.0
          array([[15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.],
                 [15., 15., 15., ..., 15., 15., 15.]])
      • created_at :
        2020-06-20T14:41:39.615645
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1
        sampling_time :
        25.67070198059082
        tuning_steps :
        2000

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • race: 3
        • replay: 202
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • race
          (race)
          <U7
          'Terran' 'Protoss' 'Zerg'
          array(['Terran', 'Protoss', 'Zerg'], dtype='<U7')
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • μ
          (chain, draw, race)
          float64
          4.487e+03 3.816e+03 ... 4.079e+03
          array([[[4487.3036091 , 3816.4730759 , 3841.54847432],
                  [3678.10941335, 4259.6222888 , 3309.53839094],
                  [4523.44352926, 3771.63792973, 4095.71172882],
                  ...,
                  [3793.7352304 , 3936.80991215, 3897.05804332],
                  [4287.27113474, 4067.38137671, 3856.85673442],
                  [3792.63645476, 3763.38063103, 4079.25539045]]])
        • σ
          (chain, draw, race)
          float64
          203.6 143.1 121.8 ... 137.4 2.277
          array([[[203.63022425, 143.11882721, 121.84862917],
                  [ 45.92168871,  54.50152003, 165.24930064],
                  [ 73.03480705,  79.10581705,  32.67507679],
                  ...,
                  [  2.51873565, 187.68065267, 164.95280152],
                  [128.66435759,  34.45577797, 153.07274428],
                  [120.71958961, 137.40100064,   2.27693063]]])
        • winrate
          (chain, draw, replay)
          float64
          0.415 0.3547 ... 0.2377 0.3302
          array([[[0.41497111, 0.35469398, 0.71008641, ..., 0.2409493 ,
                   0.6721141 , 0.32116004],
                  [0.29598745, 0.56161731, 0.26909548, ..., 0.55386956,
                   0.28532212, 0.56595945],
                  [0.82468725, 0.30495278, 0.76779695, ..., 0.28886179,
                   0.79610061, 0.31071488],
                  ...,
                  [0.34586104, 0.51741056, 0.31504336, ..., 0.31216598,
                   0.36711597, 0.13365978],
                  [0.69922031, 0.44950387, 0.67782839, ..., 0.41620837,
                   0.84102901, 0.41210879],
                  [0.35284029, 0.20802614, 0.30976338, ..., 0.35838849,
                   0.23765418, 0.33020678]]])
      • created_at :
        2020-06-20T14:41:40.231024
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • chain: 1
        • draw: 2000
        • replay: 202
        • chain
          (chain)
          int64
          0
          array([0])
        • draw
          (draw)
          int64
          0 1 2 3 4 ... 1996 1997 1998 1999
          array([   0,    1,    2, ..., 1997, 1998, 1999])
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • win
          (chain, draw, replay)
          int64
          0 1 1 0 1 0 1 0 ... 0 0 0 0 0 0 0 0
          array([[[0, 1, 1, ..., 0, 1, 0],
                  [0, 1, 0, ..., 0, 1, 0],
                  [1, 0, 0, ..., 1, 1, 0],
                  ...,
                  [0, 1, 0, ..., 1, 1, 0],
                  [1, 0, 1, ..., 1, 0, 1],
                  [1, 0, 0, ..., 0, 0, 0]]])
      • created_at :
        2020-06-20T14:41:40.232791
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 202
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • win
          (replay)
          float64
          1.0 1.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
          array([1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 0., 0., 1., 1., 0., 0., 0.,
                 1., 0., 1., 1., 1., 1., 1., 0., 0., 1., 0., 0., 0., 1., 1., 0., 1.,
                 1., 1., 0., 0., 1., 1., 1., 1., 1., 1., 0., 1., 1., 0., 0., 0., 0.,
                 0., 0., 1., 0., 1., 1., 1., 0., 0., 1., 1., 1., 1., 1., 0., 0., 0.,
                 1., 0., 0., 1., 1., 0., 1., 1., 1., 0., 0., 0., 0., 0., 1., 0., 1.,
                 0., 0., 0., 0., 1., 1., 1., 0., 0., 1., 1., 0., 1., 1., 0., 0., 0.,
                 0., 1., 1., 1., 0., 0., 1., 1., 0., 1., 0., 0., 1., 0., 1., 1., 0.,
                 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 1., 1., 1., 1.,
                 1., 0., 1., 0., 0., 0., 1., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0.,
                 0., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 0., 0., 0., 0., 0.,
                 0., 0., 1., 0., 1., 1., 0., 0., 0., 1., 1., 1., 1., 1., 0., 1., 1.,
                 0., 0., 1., 1., 1., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0.])
      • created_at :
        2020-06-20T14:41:40.233660
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

    • Show/Hide data repr Show/Hide attributes
      xarray.Dataset
        • replay: 202
        • replay
          (replay)
          int64
          265 223 402 206 ... 210 188 131 144
          array([265, 223, 402, ..., 188, 131, 144])
        • enemy_race
          (replay)
          int32
          0 1 0 2 0 1 0 1 ... 0 2 1 2 0 1 0 1
          array([0, 1, 0, 2, 0, 1, 0, 1, 1, 2, 0, 1, 1, 2, 2, 1, 0, 1, 1, 0, 2, 0,
                 0, 0, 2, 2, 0, 2, 2, 0, 2, 2, 2, 1, 1, 0, 2, 2, 1, 1, 2, 1, 1, 1,
                 0, 0, 0, 2, 1, 2, 2, 0, 0, 0, 2, 2, 2, 2, 0, 0, 2, 0, 0, 0, 0, 0,
                 2, 0, 2, 2, 1, 2, 2, 0, 1, 1, 1, 2, 2, 0, 1, 1, 2, 1, 2, 0, 1, 1,
                 1, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 1, 2, 0, 2, 1, 2, 2, 0, 0,
                 0, 0, 1, 2, 2, 0, 0, 0, 1, 1, 1, 2, 2, 2, 1, 0, 2, 0, 2, 0, 2, 2,
                 2, 1, 2, 2, 2, 0, 0, 2, 2, 1, 2, 1, 1, 1, 2, 0, 2, 1, 2, 2, 2, 1,
                 0, 0, 1, 2, 2, 1, 2, 0, 0, 1, 2, 0, 0, 0, 2, 2, 0, 2, 2, 2, 1, 0,
                 1, 1, 1, 0, 0, 0, 0, 2, 0, 2, 0, 2, 2, 1, 2, 0, 1, 2, 0, 2, 1, 2,
                 0, 1, 0, 1], dtype=int32)
        • enemy_mmr
          (replay)
          int32
          4038 4163 4089 ... 4185 4000 4188
          array([4038, 4163, 4089, 4196, 4005, 4043, 4036, 4078, 3928, 3936, 3988,
                 4014, 4028, 3915, 3896, 4017, 4000, 3936, 4037, 3845, 3980, 3889,
                 3979, 3997, 4075, 4115, 3928, 4092, 4006, 3995, 4034, 3889, 3900,
                 4011, 3962, 3955, 4054, 3959, 3879, 4072, 4032, 3986, 3966, 4002,
                 4238, 3995, 4225, 4098, 4451, 4135, 4042, 4008, 4011, 4152, 4108,
                 4095, 4071, 4337, 3848, 4111, 4009, 4144, 4021, 4136, 4213, 4401,
                 4444, 4467, 4060, 4193, 4175, 3999, 4004, 4285, 4019, 4190, 4166,
                 4183, 4076, 4242, 4017, 4228, 4001, 4099, 4050, 3973, 4037, 3905,
                 4240, 4065, 3975, 3919, 4091, 4093, 4045, 4045, 4101, 3975, 4189,
                 4047, 4003, 4040, 3997, 4010, 4023, 4004, 3939, 4153, 3962, 4030,
                 4050, 4080, 4093, 4071, 4013, 4146, 4109, 4019, 4049, 3998, 4021,
                 3959, 3985, 3990, 4002, 4033, 3883, 4123, 4199, 3851, 3889, 4045,
                 5035, 3856, 3924, 3902, 4088, 3921, 4055, 3952, 4027, 3905, 3770,
                 3940, 3899, 4082, 3921, 3931, 3959, 3998, 3888, 4039, 3988, 4025,
                 3831, 3952, 3945, 3869, 3981, 3833, 4008, 4119, 4072, 4047, 4018,
                 4427, 4105, 4127, 4225, 4142, 3944, 4040, 4016, 4126, 3960, 3981,
                 4040, 4074, 4093, 3887, 4173, 4103, 3929, 4040, 4081, 3949, 4123,
                 4253, 4223, 4059, 4028, 3946, 4244, 4304, 4182, 4370, 4194, 4147,
                 4232, 4185, 4000, 4188], dtype=int32)
      • created_at :
        2020-06-20T14:41:40.235138
        arviz_version :
        0.8.3
        inference_library :
        pymc3
        inference_library_version :
        3.9.1

az.plot_trace(output, var_names=var_names);
az.plot_posterior(output, var_names = var_names);
az.summary(output, var_names = var_names)
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_mean ess_sd ess_bulk ess_tail r_hat
μ[0] 4187.331 93.433 4014.681 4370.002 0.827 0.588 12761.0 12620.0 12833.0 5208.0 1.0
μ[1] 4014.234 97.855 3835.751 4202.949 0.837 0.592 13669.0 13643.0 13703.0 5413.0 1.0
μ[2] 3961.245 88.126 3794.804 4122.579 0.716 0.516 15147.0 14584.0 15149.0 5685.0 1.0
σ[0] 79.342 60.635 0.027 187.229 0.751 0.531 6516.0 6516.0 5236.0 3992.0 1.0
σ[1] 80.221 59.112 0.003 184.095 0.694 0.491 7250.0 7250.0 5667.0 4667.0 1.0
σ[2] 82.427 62.380 0.020 196.670 0.784 0.554 6330.0 6330.0 5219.0 4182.0 1.0

And this seems to show I’ve grown more balanced as a player - the daily fluctuations are much more similar between games, I’ve gotten much better against Protoss, slightly worse against Terran, and my PvZ looks like it’ll need some more work. Still, I’m really happy to see the data show I’m not as bad in PvP now!

For the next post, I’m torn between a few experiments I’m running:

  • a hierarchical model to estimate both true global and per-matchup MMR at the same time while sharing information between the three matchups
  • map dependence, which is going to be easy-ish now that I know how to index variables well
  • actual time dependence, but I’ll have to read up more on Gaussian processes and random walks to do that.
  • playing around with prior- and posterior- predictive checks, which was going to be in this post, but it turns out I don’t fully understand them enough yet. This will involve a foray into xarray - the awesome data structure that stores our results.

If you have any preference, please say so in the comments; I’ll try to take it into account. Until the next time!